Rockafellar R T. Convex analysis[M]. Princeton University Press, 1970.
Boyd S, Boyd S P, Vandenberghe L. Convex optimization[M]. Cambridge University Press, 2004
Bazaraa M S, Sherali H D, Shetty C M. Nonlinear programming: theory and algorithms[M]. John Wiley &
Sons, 2006.
Nocedal J, Wright S. Numerical optimization[M]. Springer Science & Business Media, 2006.
Floudas C A. Nonlinear and mixed-integer optimization: fundamentals and applications[M]. Oxford
University Press, 1995.
Tawarmalani M, Sahinidis N V. Convexification and global optimization in continuous and
mixed-integer nonlinear programming: theory, algorithms, software, and applications[M]. Springer
Science & Business Media, 2002.
Miettinen K. Nonlinear multiobjective optimization[M]. Springer Science & Business Media, 1999.
Shapiro A, Dentcheva D, Ruszczynski A. Lectures on stochastic programming: modeling and theory[M].
Society for Industrial and Applied Mathematics, 2009.
Ben-Tal A, El Ghaoui L, Nemirovski A. Robust optimization[M]. Princeton University Press, 2009.
袁亚湘. 非线性优化计算方法[M]. 科学出版社,2008.
2、最优化算法
2.1 确定性优化算法
2.2 随机性优化算法
无约束优化
State transition algorithm(STA)
X Zhou, C Yang, W Gui. State transition algorithm[J], Journal of Industrial and Management
Optimization, 2012, 8 (4): 1039-1056. STA_2012.pdf
Zhou X, Yang C, Gui W. A statistical study on parameter selection of operators in continuous
state transition algorithm[J]. IEEE Transactions on Cybernetics, 2019, 49(10): 3722-3730.POSTA_2019.pdf
X Zhou, C Yang, W Gui. State transition algorithm[J], Journal of Industrial and Management
Optimization, 2012, 8 (4): 1039-1056. STA_2012.pdf
Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by simulated annealing[J]. Science, 1983,
220(4598): 671-680. SA_1983.pdf
Whitley D. A genetic algorithm tutorial[J]. Statistics and Computing, 1994, 4(2): 65-85. GA_1994.pdf
Ant colony
Dorigo M, Gambardella L M. Ant colony system: a cooperative learning approach to the traveling
salesman problem[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-66. ACS_1997.pdf
Dorigo M, Birattari M, Stutzle T. Ant colony optimization[J]. IEEE Computational Intelligence
Magazine, 2006, 1(4): 28-39. ACO_2006.pdf
Differential evolution(DE)
Storn R, Price K. Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359. DE_1997.pdf
Qin A K, Huang V L, Suganthan P N. Differential evolution algorithm with strategy adaptation for
global numerical optimization[J]. IEEE transactions on Evolutionary Computation, 2009, 13(2):
398-417. SaDE_2009.pdf
Wang Y, Cai Z, Zhang Q. Differential evolution with composite trial vector generation strategies
and control parameters[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 55-66. CoDE_2011.pdf
Hansen N, Müller S D, Koumoutsakos P. Reducing the time complexity of the derandomized evolution
strategy with covariance matrix adaptation (CMA-ES)[J]. Evolutionary Computation, 2003, 11(1): 1-18.
CMA-ES_2003.pdf
Liang J J, Qin A K, Suganthan P N, et al. Comprehensive learning particle swarm optimizer for global
optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3):
281-295. CLPSO_2006.pdf
Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization:
artificial bee colony (ABC) algorithm[J]. Journal of global optimization, 2007, 39(3): 459-471. ABC_2007.pdf
Yang X S, Deb S. Engineering optimisation by cuckoo search[J]. International Journal of Mathematical
Modelling and Numerical Optimisation, 2010, 1(4): 330-343. CS_2010.pdf
Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014,
69: 46-61. GWO_2014.pdf
约束优化
Runarsson T P, Yao X. Stochastic ranking for constrained evolutionary optimization[J]. IEEE
Transactions on Evolutionary Computation, 2000, 4(3): 284-294.
Coello C A C. Theoretical and numerical constraint-handling techniques used with evolutionary
algorithms: a survey of the state of the art[J]. Computer Methods in Applied Mechanics and
Engineering, 2002, 191(11-12): 1245-1287.
Coello C A C, Montes E M. Constraint-handling in genetic algorithms through the use of
dominance-based tournament selection[J]. Advanced Engineering Informatics, 2002, 16(3): 193-203.
Venkatraman S, Yen G G. A generic framework for constrained optimization using genetic
algorithms[J]. IEEE Transactions on Evolutionary Computation, 2005, 9(4): 424-435.
Cai Z, Wang Y. A multiobjective optimization-based evolutionary algorithm for constrained
optimization[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(6): 658-675.
Takahama T, Sakai S. Constrained optimization by applying the alpha constrained method to the
nonlinear simplex method with mutations[J]. IEEE Transactions on Evolutionary Computation, 2005,
9(5): 437-451.
Zhang M, Luo W, Wang X. Differential evolution with dynamic stochastic selection for constrained
optimization[J]. Information Sciences, 2008, 178(15): 3043-3074.
Wang Y, Cai Z, Zhou Y, et al. An adaptive tradeoff model for constrained evolutionary
optimization[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(1): 80-92.
Mallipeddi R, Suganthan P N. Ensemble of constraint handling techniques[J]. IEEE Transactions on
Evolutionary Computation, 2010, 14(4): 561-579.
Mezura-Montes E, Coello C A C. Constraint-handling in nature-inspired numerical optimization: past,
present and future[J]. Swarm and Evolutionary Computation, 2011, 1(4): 173-194.
多目标优化
Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength Pareto evolutionary algorithm[J].
TIK-report, 2001, 103. SPEA2_2001.pdf
Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J].
IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. NSGA-II_2002.pdf
Deb K, Mohan M, Mishra S. Evaluating the ϵ-domination based multi-objective evolutionary algorithm
for a quick computation of Pareto-optimal solutions[J]. Evolutionary Computation, 2005, 13(4):
501-525. epsilon dominace -2005.pdf
Zhang Q, Li H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition[J]. IEEE
Transactions on Evolutionary Computation, 2007, 11(6): 712-731. MOEA-D_2007.pdf
Bader J, Zitzler E. HypE: An algorithm for fast hypervolume-based many-objective optimization[J].
Evolutionary Computation, 2011, 19(1): 45-76.HypE_2011.pdf
Yang S, Li M, Liu X, et al. A grid-based evolutionary algorithm for many-objective optimization[J].
IEEE Transactions on Evolutionary Computation, 2013, 17(5): 721-736. GrEA_2013.pdf
Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-point-based
nondominated sorting approach, part I: solving problems with box constraints[J]. IEEE Transactions
on Evolutionary Computation, 2014, 18(4): 577-601. NSGA-III_2014.pdf
Zhang X, Tian Y, Jin Y. A knee point-driven evolutionary algorithm for many-objective
optimization[J]. IEEE Transactions on Evolutionary Computation, 2014, 19(6): 761-776. KnEA_2015.pdf
Li K, Deb K, Zhang Q, et al. An evolutionary many-objective optimization algorithm based on
dominance and decomposition[J]. IEEE Transactions on Evolutionary Computation, 2014, 19(5): 694-716.
MOEA-DD-2015.pdf
Cheng R, Jin Y, Olhofer M, et al. A reference vector guided evolutionary algorithm for
many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5):
773-791. RVEA-2016.pdf