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Differential Evolution with Composite Trial Vector
Generation Strategies and Control Parameters

Yong Wang, Member, IEEE, Zixing Cai, Senior Member, IEEE, and Qingfu Zhang, Senior Member, IEEE

Abstract—Trial vector generation strategies and control pa-
rameters have a significant influence on the performance of
differential evolution (DE). This paper studies whether the
performance of DE can be improved by combining several
effective trial vector generation strategies with some suitable
control parameter settings. A novel method, called composite DE
(CoDE), has been proposed in this paper. This method uses three
trial vector generation strategies and three control parameter
settings. It randomly combines them to generate trial vectors.
CoDE has been tested on all the CEC2005 contest test instances.
Experimental results show that CoDE is very competitive.

Index Terms—Control parameters, differential evolution,
global numerical optimization, trial vector generation strategy.

I. Introduction

D IFFERENTIAL evolution (DE), proposed by Storn and
Price [1], [2], is a very popular evolutionary algorithm

(EA) and exhibits remarkable performance in a wide variety
of problems from diverse fields. Like other EAs, DE is a
population-based stochastic search technique. It uses mutation,
crossover, and selection operators at each generation to move
its population toward the global optimum.

The DE performance mainly depends on two components.
One is its trial vector generation strategy (i.e., mutation and
crossover operators), and the other is its control parameters
(i.e., population size NP, scaling factor F, and crossover
control parameter Cr). In general, when using DE to solve
optimization problems, we should first determine its trial vec-
tor generation strategy, and then tune the control parameters
by a trial-and-error procedure. Since finding right parameter
values in such a way is often very time-consuming, there
has been an increasing interest in designing new DE variants
with adaptive and self-adaptive control parameters. In adaptive
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parameter control [3], feedback from the search is exploited
to adjust the parameter setting, and self-adaptive parameter
control often encodes the parameters into the chromosome
and evolves them from generation to generation. In addition
to parameter adaptation [3], DE with strategy adaptation has
also been studied by Qin et al. [4].

DE researchers have suggested many empirical guidelines
for choosing trial vector generation strategies and control
parameter settings during the last decade. It has been clear
that some trial vector generation strategies are suitable for
the global search [4] and some others are useful for rotated
problems [5], and that some control parameter settings can
speed up the convergence [6] and some other settings are
effective for separable functions [7]. Undoubtedly, these ex-
periences are very useful for improving the performance of
DE. We have observed, however, that these experiences have
not yet systematically exploited in DE algorithm design. This
motivates us to study whether the DE performance can be im-
proved by combining several trial vector generation strategies
with several different control parameter settings, which have
distinct advantages confirmed by other researchers’ studies.
Our work along this line has produced a composite DE, called
CoDE. This proposed approach combines three well-studied
trial vector generation strategies with three control parameter
settings in a random way to generate trial vectors. CoDE has
a very simple structure and thus is very easy to implement.
Extensive experiments have been conducted in this paper to
compare it with four other state-of-the-art DE variants and
three other EAs on 25 commonly used CEC2005 contest test
instances.

The rest of this paper is organized as follows. Section II
briefly introduces the basic DE operators. Section III reviews
the related work on DE. The proposed approach is introduced
in Section IV. Experimental results are reported in Section V.
Finally, Section VI concludes this paper.

II. Differential Evolution

DE is for dealing with the continuous optimization problem.
We suppose in this paper that the objective function to be
minimized is f (�x), �x = (x1, . . . , xD) ∈ �D, and the feasible

solution space is � =
D∏

i=1
[Li, Ui].

At generation G = 0, an initial population {�xi,0 = (xi,1,0,

xi,2,0, . . . , xi,D,0),i = 1, 2, . . . , NP} is randomly sampled from
the feasible solution space, where NP is the population size.
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At each generation G, DE creates a mutant vector �vi,G =
(vi,1,G, vi,2,G, . . . , vi,D,G) for each individual �xi,G (called a
target vector) in the current population. The five widely used
DE mutation operators are shown as follows.

1) “rand/1”

�vi,G = �xr1,G + F · (�xr2,G − �xr3,G). (1)

2) “best/1”

�vi,G = �xbest,G + F · (�xr1,G − �xr2,G). (2)

3) “current-to-best/1”

�vi,G = �xi,G + F · (�xbest,G − �xi,G) + F · (�xr1,G − �xr2,G). (3)

4) “best/2”

�vi,G = �xbest,G +F · (�xr1,G −�xr2,G)+F · (�xr3,G −�xr4,G). (4)

5) “rand/2”

�vi,G = �xr1,G +F · (�xr2,G −�xr3,G) +F · (�xr4,G −�xr5,G). (5)

In the above equations, r1, r2, r3, r4, and r5 are distinct
integers randomly selected from the range [1, NP] and are
also different from i. The parameter F is called the scaling
factor, which amplifies the difference vectors. �xbest,G is the
best individual in the current population.

After mutation, DE performs a binomial crossover operator
on �xi,G and �vi,G to generate a trial vector �ui,G = (ui,1,G,

ui,2,G, . . . , ui,D,G)

ui,j,G =

⎧
⎨

⎩

vi,j,G, if randj(0, 1) ≤ Cr or j = jrand

xi,j,G, otherwise
(6)

where i = 1, 2, . . . , NP,j = 1, 2, . . . , D,jrand is a randomly
chosen integer in [1, D], randj(0, 1) is a uniformly distributed
random number between 0 and 1 which is generated for each
j, and Cr ∈[0, 1] is called the crossover control parameter. Due
to the use of jrand , the trial vector �ui,G differs from its target
vector �xi,G.

If the jth element ui,j,G of the trial vector �ui,G is infeasible
(i.e., out of the boundary), it is reset as follows:

ui,j,G =

⎧
⎨

⎩

min{Uj, 2Lj − ui,j,G}, if ui,j,G < Lj

max{Lj, 2Uj − ui,j,G}, if ui,j,G > Uj.

(7)

The selection operator is performed to select the better one
from the target vector �xi,G and the trial vector �ui,G to enter
the next generation

�xi,G+1 =

⎧
⎨

⎩

�ui,G, if f (�ui,G) ≤ f (�xi,G)

�xi,G, otherwise.
(8)

III. Previous Work

Recognizing that the performance of DE depends on its
trial vector generation strategies and its control parameters,
researchers have proposed many DE variants during the past
decade.

Some work mainly focuses on the trial vector generation
strategies. Fan and Lampinen [8] proposed a trigonometric
mutation operator to accelerate the DE convergence. Their
mutation operator can be viewed as a local search operator,
since it exploits the objective function value information and
moves the new trial vector toward the direction provided by
the best one of three individuals chosen for mutation. In order
to balance the convergence speed and the search ability, they
also introduced an extra parameter Mt for controlling the
frequency of the use of the trigonometric mutation. Mezura-
Montes et al. [9] proposed a novel mutation operator which
incorporates the information of the best solution in the current
population and the current parent to create a new trial vector.
Feoktistov and Janaqi [10] classified mutation operators into
four categories according to the way they use the objective
function values. It has been observed that “current-to-best/1”
strategy performs poorly on exploring the search space when
solving multimodal problems [11]. Recently, much effort has
been made to improve the performance of this strategy. Das
et al. [5] improved the “current-to-best/1” strategy by intro-
ducing a local neighborhood model, in which each vector is
mutated by using the best individual solution found so far in
its small neighborhood. In addition, the local mutation model
is combined with the global mutation model by a weight
factor. Zhang and Sanderson [12] proposed the “current-to-
pbest/1” strategy. Instead of only adopting the best individual
in the “current-to-best/1” strategy, their strategy also utilizes
the information of other good solutions. Moreover, the recently
generated inferior solutions are incorporated in this strategy.
It is very interesting to note that some ideas of the above two
approaches were inspired by particle swarm optimization.

Many attempts have also been made to improve the con-
vergence speed and robustness of DE by tuning the control
parameters such as the population size NP, the scaling factor
F, and the crossover control parameter Cr. Storn and Price
[2] argued that these three control parameters are not difficult
to set for obtaining good performance. They suggested that
NP should be between 5D and 10D, F should be 0.5 as a
good initial choice and the value of F smaller than 0.4 or
larger than 1.0 will lead to performance degradation, and Cr

can be set to 0.1 or 0.9. In contrast, Gämperle et al. [13]
showed that the performance of DE is very sensitive to the
setting of the control parameters based on their experiments on
Sphere, Rosenbrock, and Rastrigin functions. They suggested
that NP should be between 3D and 8D. They argued that the
value of F should not be smaller than a problem-dependent
threshold value in order to prevent premature convergence,
and that if F is larger than 1.0, the convergence speed will
decrease. So, they suggested that a good initial choice of F is
0.6. A suggested value for Cr is between 0.3 and 0.9 in [13].
Ronkkonen et al. [7] suggested that NP should be between 2D
and 4D, F should be chosen from the range [0.4, 0.95] with
F = 0.9 being a good tradeoff between convergence speed

Authorized licensed use limited to: Central South University. Downloaded on January 22,2022 at 08:02:07 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: DIFFERENTIAL EVOLUTION WITH COMPOSITE TRIAL VECTOR GENERATION STRATEGIES AND CONTROL PARAMETERS 57

Fig. 1. Illustration of combining trial vector generation strategies with control parameter settings.

and robustness, and Cr should be between 0.0 and 0.2 for
separable functions and between 0.9 and 1.0 for multimodal
and non-separable functions. Clearly, these researchers agreed
that F should be in the range of [0.4, 1.0], and that Cr should
be either close to 1.0 or 0.0 depending on the characteristics
of problems. However, there is no agreement on the setting of
NP.

Das et al. [14] introduced two schemes to adapt the scaling
factor F in DE. One scheme varies F in a random manner,
and the other one linearly reduces the value of F from a
preset maximal value to a minimal one. Liu and Lampinen [15]
proposed a fuzzy adaptive DE, which uses a fuzzy knowledge-
based system to dynamically adjust F and Cr. In their method,
the mean square roots of differences of the function values and
the population members during the successive generations are
used as the inputs of the fuzzy logic controller, and F and Cr

are the outputs. Brest et al. [16] proposed a self-adaptive DE
(jDE), in which both F and Cr are applied at individual level.
During the evolution, the new F takes a value from 0.1 to 0.9
in a random manner with a probability τ1, the new Cr takes a
value from 0.0 to 1.0 in a random manner with a probability
τ2, and both of them are obtained before the mutation is
executed. In the JADE proposed by Zhang and Sanderson [12],
a normal distribution and a Cauchy distribution are utilized to
generate F and Cr for each target vector, respectively. JADE
extracts information from the recent successful F and Cr and
uses such information for generating new F and Cr. Besides
the adaptation of the control parameters F and Cr, Teo [17]
investigated the population sizing problem via self-adaptation
and proposed two different approaches, one adopts an absolute
encoding strategy for NP, and the other adopts a relative
encoding strategy for NP.

Unlike the above methods, SaDE, proposed by Qin et al.
[4], adaptively adjusts its trial vector generation strategies
and control parameters simultaneously by learning from the
previous search. During the late stage of this paper revision, we
were aware that Mallipeddi et al. [18] very recently proposed
an ensemble of trial vector generation strategies and control
parameters of DE (EPSDE). EPSDE includes a pool of distinct
trial vector generation strategies and a pool of values for the
control parameters F and Cr.

IV. Composite DE (CoDE)

As pointed out in Section III, the characteristics of the
trial vector generation strategies and the control parameters
of DE have been extensively investigated, and some prior
knowledge has been obtained during the last decade. Such
prior knowledge could be used for designing more effective
and robust DE variants. We also observed that in most DE
variants including adaptive and self-adaptive DE variants, only
one trial vector generation strategy and only one control
parameter setting are employed at each generation for each
target vector. As a result, the search ability of these algorithms
could be limited.

Based on the above considerations, we propose a novel
method, called CoDE, the primary idea of which is to ran-
domly combine several trial vector generation strategies with
a number of control parameter settings at each generation to
create new trial vectors. The above idea is illustrated in Fig. 1.

In general, we expect that the chosen trial vector generation
strategies and control parameter settings show distinct advan-
tages and, therefore, they can be effectively combined to solve
different kinds of problems. In this paper, we choose three
trial vector generation strategies and three control parameter
settings to constitute the strategy candidate pool and the
parameter candidate pool, respectively. Thus, the parameters
m and n in Fig. 1 are equal to 3. The three selected trial vector
generation strategies are:

1) “rand/1/bin”;
2) “rand/2/bin”;
3) “current-to-rand/1”.

Note that in the “current-to-rand/1” strategy, the binominal
crossover operator is not applied. The three control parameter
settings are:

1) [F = 1.0, Cr = 0.1];
2) [F = 1.0, Cr = 0.9];
3) [F = 0.8, Cr = 0.2].

The above strategies and parameter settings are frequently
used in many DE variants and their properties have been well
studied. The three strategies are shown in the equations at
the bottom of the next page, where rand denotes a uniformly
distributed random number between 0 and 1. In order to further
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Fig. 2. Pseudocode of CoDE.

improve the search ability of the “rand/2/bin” strategy, the first
scaling factor F in the “rand/2” mutation operator is randomly
chosen from 0 to 1 in this paper.

At each generation, each trial vector generation strategy
in the strategy candidate pool is used to create a new trial
vector with a control parameter setting randomly chosen from
the parameter candidate pool. Thus, three trial vectors are
generated for each target vector. Then the best one enters
the next generation if it is better than its target vector. The
pseudocode of CoDE is presented in Fig. 2.

To the best of our knowledge, EPSDE [18] was the first
attempt to provide a systematic framework for combining
different trial vector generation strategies with different con-
trol parameter settings. Mallipeddi and Suganthan proposed
another version of EPSDE in [26]. CoDE differs from EPSDE
[18] in the following major aspects.

1) CoDE selects trial vector generation strategies and con-
trol parameter settings based on experimental results
reported in the literature. Each strategy in CoDE is
coupled with a randomly chosen parameter setting for
generating a new solution. In contrast, EPSDE learns

“rand/1/bin”

ui,j,G =

{
xr1,j,G + F · (xr2,j,G − xr3,j,G), if rand < Cr or j = jrand

xi,j,G, otherwise

“rand/2/bin”

ui,j,G =

{
xr1,j,G + F · (xr2,j,G − xr3,j,G) + F · (xr4,j,G − xr5,j,G), if rand < Cr orj = jrand

xi,j,G, otherwise

“current-to-rand/1”

�ui,G = �xi,G + rand · (�xr1,G − �xi,G) + F · (�xr2,G − �xr3,G)

good combinations from evolution. If a combination
performs better in the previous search, it will have more
chances to be used in the further search in EPSDE.
CoDE aims at making good use of other researchers’
experiences whereas EPSDE focuses on learning good
combinations.

2) The strategy candidate pool of CoDE is different from
that of EPSDE. In CoDE, three fixed control parameter
settings are used. In EPSDE, however, F is chosen from
0.4 to 0.9 with step-size 0.1 and Cr is chosen from 0.1 to
0.9 with step-size 0.1. CoDE chooses its strategies and
parameter settings based on other researchers’ studies.

3) In CoDE, three trial vectors are generated for each target
vector. However, as in the conventional DE only one trial
vector is produced for each target vector in EPSDE.

Next, we discuss the properties of the strategy candidate
pool and the parameter candidate pool.

A. Basic Properties of the Strategy Candidate Pool

The “rand/1/bin” strategy is the most commonly used strat-
egy in the literature. In this strategy, all vectors for mutation
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TABLE I

Experimental Results of JADE, jDE, SaDE, EPSDE, and CoDE Over 25 Independent Runs on 25 Test Functions of 30 Variables

With 300 000 FES

Function JADE jDE SaDE EPSDE CoDE
Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev

F1 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
F2 1.07E-28±1.00E-28+ 1.11E-06±1.96E-06− 8.26E-06±1.65E-05− 4.23E-26±4.07E-26+ 1.69E-15±3.95E-15

Unimodal
Functions

F3 8.42E+03±7.26E+03+ 1.98E+05±1.10E+05− 4.27E+05±2.08E+05− 8.74E+05±3.28E+06− 1.05E+05±6.25E+04

F4 1.73E-16±5.43E-16+ 4.40E-02±1.26E-01− 1.77E+02±2.67E+02− 3.49E+02±2.23E+03− 5.81E-03±1.38E-02
F5 8.59E-08±5.23E-07+ 5.11E+02±4.40E+02− 3.25E+03±5.90E+02− 1.40E+03±7.12E+02− 3.31E+02±3.44E+02
F6 1.02E+01±2.96E+01− 2.35E+01±2.50E+01− 5.31E+01±3.25E+01− 6.38E-01±1.49E+00− 1.60E-01±7.85E-01
F7 8.07E-03±7.42E-03≈ 1.18E-02±7.78E-03− 1.57E-02±1.38E-02− 1.77E-02±1.34E-02− 7.46E-03±8.55E-03
F8 2.09E+01±1.68E-01− 2.09E+01±4.86E-02− 2.09E+01±4.95E-02− 2.09E+01±5.81E-02− 2.01E+01±1.41E-01

Basic Multi-
modal Func-
tions

F9 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 2.39E-01±4.33E-01− 3.98E-02±1.99E-01− 0.00E+00±0.00E+00
F10 2.41E+01±4.61E+00+ 5.54E+01±8.46E+00− 4.72E+01±1.01E+01− 5.36E+01±3.03E+01− 4.15E+01±1.16E+01
F11 2.53E+01±1.65E+00− 2.79E+01±1.61E+00− 1.65E+01±2.42E+00− 3.56E+01±3.88E+00− 1.18E+01±3.40E+00
F12 6.15E+03±4.79E+03− 8.63E+03±8.31E+03− 3.02E+03±2.33E+03≈ 3.58E+04±7.05E+03− 3.05E+03±3.80E+03

Expanded
Multimodal
Functions

F13 1.49E+00±1.09E-01≈ 1.66E+00±1.35E-01− 3.94E+00±2.81E-01− 1.94E+00±1.46E-01− 1.57E+00±3.27E-01

F14 1.23E+01±3.11E-01≈ 1.30E+01±2.00E-01− 1.26E+01±2.83E-01− 1.35E+01±2.09E-01− 1.23E+01±4.81E-01
F15 3.51E+02±1.28E+02≈ 3.77E+02±8.02E+01≈ 3.76E+02±7.83E+01≈ 2.12E+02±1.98E+01+ 3.88E+02±6.85E+01
F16 1.01E+02±1.24E+02− 7.94E+01±2.96E+01− 8.57E+01±6.94E+01≈ 1.22E+02±9.19E+01− 7.37E+01±5.13E+01
F17 1.47E+02±1.33E+02− 1.37E+02±3.80E+01− 7.83E+01±3.76E+01− 1.69E+02±1.02E+02− 6.67E+01±2.12E+01

Hybrid
Composition
Functions

F18 9.04E+02±1.03E+00≈ 9.04E+02±1.08E+01≈ 8.68E+02±6.23E+01≈ 8.20E+02±3.35E+00+ 9.04E+02±1.04E+00

F19 9.04E+02±8.40E-01≈ 9.04E+02±1.11E+00≈ 8.74E+02±6.22E+01≈ 8.21E+02±3.35E+00+ 9.04E+02±9.42E-01
F20 9.04E+02±8.47E-01≈ 9.04E+02±1.10E+00≈ 8.78E+02±6.03E+01≈ 8.22E+02±4.17E+00+ 9.04E+02±9.01E-01
F21 5.00E+02±4.67E-13≈ 5.00E+02±4.80E-13≈ 5.52E+02±1.82E+02− 8.33E+02±1.00E+02− 5.00E+02±4.88E-13
F22 8.66E+02±1.91E+01≈ 8.75E+02±1.91E+01− 9.36E+02±1.83E+01− 5.07E+02±7.26E+00+ 8.63E+02±2.43E+01
F23 5.50E+02±8.05E+01− 5.34E+02±2.77E-04≈ 5.34E+02±3.57E-03≈ 8.58E+02±6.82E+01− 5.34E+02±4.12E-04
F24 2.00E+02±2.85E-14≈ 2.00E+02±2.85E-14≈ 2.00E+02±6.20E-13≈ 2.13E+02±1.52E+00− 2.00E+02±2.85E-14
F25 2.11E+02±7.92E-01≈ 2.11E+02±7.32E-01≈ 2.14E+02±2.00E+00− 2.13E+02±2.55E+00− 2.11E+02±9.02E-01

− 7 15 16 18
+ 5 0 0 6
≈ 13 10 9 1

“Mean Error” and “Std Dev” indicate the average and standard deviation of the function error values obtained in 25 runs, respectively. Wilcoxon’s rank sum
test at a 0.05 significance level is performed between CoDE and each of JADE, jDE, SaDE, and EPSDE.
“−”, “+”, and “≈” denote that the performance of the corresponding algorithm is worse than, better than, and similar to that of CoDE, respectively.

are selected from the population at random and, consequently,
it has no bias to any special search directions and chooses
new search directions in a random manner. In the “rand/
2/bin” strategy, two difference vectors are added to the base
vector, which might lead to better perturbation than the
strategies with only one difference vector [4]. Moreover, it
can generate more different trial vectors than the “rand/1/bin”
strategy. After mutation, the “current-to-rand/1” strategy uses
the rotation-invariant arithmetic crossover rather than the
binomial crossover, to generate the trial vector [5], [19]. As
a result, this strategy is rotation-invariant and suitable for
rotated problems. The arithmetic crossover in this strategy
linearly combines the mutant vector with the target vector to
generate the trial vector as follows:

�ui,G = �xi,G + rand · (�vi,G − �xi,G) (9)

where rand is a uniformly distributed random number between
0 and 1. Note that for the arithmetic crossover the crossover
control parameter Cr in DE is not needed.

Some strategies such as “best/1/bin” strategy and
“best/2/bin” strategy utilize the information of the best
individual found so far, they might not be very effective when
solving multimodal problems. For this reason, we do not use
these strategies in this paper.

B. Basic Properties of the Parameter Candidate Pool

In general, a large value of F can make the mutant vectors
distribute widely in the search space and can increase the
population diversity. In contrast, a low value of F makes the
search focus on neighborhoods of the current solutions, and
thus it can speed up the convergence.

A large value of Cr can make the trial vector very different
from the target vector, since the trial vector inherits little
information from the target vector. Therefore, the diversity of
the offspring population can be encouraged. A small value
of Cr is very suitable for separable problems, since in this
case the trial vector may be different from the target vector
by only one parameter and, as a result, each parameter is
optimized independently.

In summary, the selected strategies and parameter settings
exhibit distinct advantages. Therefore, they are expected to
complement one another for solving optimization problems
of different characteristics. Actually, each of the three
parameter settings has the same property for the three
strategies. For instance, the first control parameter setting,
[F = 1.0, Cr = 0.1], is for dealing with separable problems
when combined with the three strategies, the second control
parameter setting, [F = 1.0, Cr = 0.9], is mainly to maintain
the population diversity and to make the three strategies more
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Fig. 3. Evolution of the mean function error values derived from JADE, jDE, SaDE, EPSDE, and CoDE versus the number of FES on six test functions.
(a) F1. (b) F2. (c) F3. (d) F4. (e) F5. (f) F6.

powerful in global exploration, and the last control parameter
setting, [F = 0.8, Cr = 0.2], encourages the exploitation of
the three strategies in the search space and thus accelerates
the convergence speed of the population.

V. Experimental Study

25 test instances proposed in the CEC 2005 special session
on real-parameter optimization were used to study the perfor-
mance of the proposed CoDE. A detailed description of these
test instances can be found in [20]. These 25 test instances
can be divided into four classes:

1) unimodal functions F1–F5;
2) basic multimodal functions F6–F12;
3) expanded multimodal functions F13–F14;
4) hybrid composition functions F15–F25.

The number of decision variables, D, was set to 30 for
all the 25 test functions. For each algorithm and each test
function, 25 independent runs were conducted with 300 000
function evaluations (FES) as the termination criterion. The
population size in CoDE was set to 30.

In our experimental studies, the average and standard devi-
ation of the function error value (f (�x) −f (�x∗

)) were recorded
for measuring the performance of each algorithm, where �x is
the best solution found by the algorithm in a run and �x∗

is
the global optimum of the test function. CoDE was compared
with four other DE variants and three non-DE approaches. In
order to have statistically sound conclusions, Wilcoxon’s rank
sum test at a 0.05 significance level was conducted on the
experimental results.

A. Comparison with Four State-of-the-Art DE

CoDE was compared with four other state-of-the-art DE
variants, i.e., JADE [12], jDE [16], SaDE [4], and EPSDE
[18]. In JADE, jDE, and SaDE, the control parameters F and
Cr were self-adapted during the evolution. In our experiments,
we used the same parameter settings for these four methods
as in their original papers. The number of FES in all these
methods was set to 300 000, as the same as in CoDE.

The experimental results are given in Table I. All the results
are obtained from 25 independent runs. The last three rows of
Table I summarize the experimental results.

1) Unimodal Functions F1–F5: Clearly, JADE is the best
among the five methods on these five unimodal functions. It
outperforms CoDE on four test functions (i.e., F2–F5). The
outstanding performance of JADE should be due to its greedy
mutation strategy (“current-to-pbest/1” strategy), which leads
to very fast convergence. CoDE is the second best. It performs
better than jDE, SaDE, and EPSDE on four, four, and three
test functions, respectively. jDE and SaDE cannot outperform
CoDE on any test function and EPSDE surpasses CoDE on
one test function (i.e., F2).

2) Basic Multimodal Functions F6–F12: On these seven
test functions, CoDE is significantly better than JADE, jDE,
SaDE, and EPSDE on four, six, six, and seven test functions,
respectively. JADE outperforms CoDE on one test function,
and jDE, SaDE, and EPSDE cannot be significantly better
than CoDE on any test function. Thus, CoDE is the winner on
these seven test functions. This can be because CoDE could
balance exploration and exploitation on these test functions
by combining different trial vector generation strategies with
different control parameter settings.
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Fig. 4. Evolution of the mean function error values derived from JADE, jDE, SaDE, EPSDE, and CoDE versus the number of FES on ten test functions.
(a) F7. (b) F8. (c) F9. (d) F10. (e) F11. (f) F12. (g) F13. (h) F14. (i) F16. (j) F17.
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TABLE II

Experimental Results of CLPSO, CMA-ES, GL-25, and CoDE Over 25 Independent Runs on 25 Test Functions of 30 Variables

with 300 000 FES

Function CLPSO CMA-ES GL-25 CoDE
Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev

F1 0.00E+00±0.00E+00≈ 1.58E-25±3.35E-26− 5.60E-27±1.76E-26− 0.00E+00±0.00E+00
Unimodal
Functions

F2 8.40E+02±1.90E+02− 1.12E-24±2.93E-25+ 4.04E+01±6.28E+01− 1.69E-15±3.95E-15
F3 1.42E+07±4.19E+06− 5.54E-21±1.69E-21+ 2.19E+06±1.08E+06− 1.05E+05±6.25E+04
F4 6.99E+03±1.73E+03− 9.15E+05±2.16E+06− 9.07E+02±4.25E+02− 5.81E-03±1.38E-02
F5 3.86E+03±4.35E+02− 2.77E-10±5.04E-11+ 2.51E+03±1.96E+02− 3.31E+02±3.44E+02
F6 4.16E+00±3.48E+00− 4.78E-01±1.32E+00− 2.15E+01±1.17E+00− 1.60E-01±7.85E-01

Basic Multi-
modal Func-
tions

F7 4.51E-01±8.47E-02− 1.82E-03±4.33E-03+ 2.78E-02±3.62E-02− 7.46E-03±8.55E-03
F8 2.09E+01±4.41E-02− 2.03E+01±5.72E-01− 2.09E+01±5.94E-02− 2.01E+01±1.41E-01
F9 0.00E+00±0.00E+00≈ 4.45E+02±7.12E+01− 2.45E+01±7.35E+00− 0.00E+00±0.00E+00
F10 1.04E+02±1.53E+01− 4.63E+01±1.16E+01≈ 1.42E+02±6.45E+01− 4.15E+01±1.16E+01
F11 2.60E+01±1.63E+00− 7.11E+00±2.14E+00+ 3.27E+01±7.79E+00− 1.18E+01±3.40E+00
F12 1.79E+04±5.24E+03− 1.26E+04±1.74E+04− 6.53E+04±4.69E+04− 3.05E+03±3.80E+03

Expanded
Multimodal
Functions

F13 2.06E+00±2.15E-01− 3.43E+00±7.60E-01− 6.23E+00±4.88E+00− 1.57E+00±3.27E-01

F14 1.28E+01±2.48E-01− 1.47E+01±3.31E-01− 1.31E+01±1.84E-01− 1.23E+01±4.81E-01

F15 5.77E+01±2.76E+01+ 5.55E+02±3.32E+02− 3.04E+02±1.99E+01+ 3.88E+02±6.85E+01
F16 1.74E+02±2.82E+01− 2.98E+02±2.08E+02− 1.32E+02±7.60E+01− 7.37E+01±5.13E+01
F17 2.46E+02±4.81E+01− 4.43E+02±3.34E+02− 1.61E+02±6.80E+01− 6.67E+01±2.12E+01

Hybrid
Composition
Functions

F18 9.13E+02±1.42E+00− 9.04E+02±3.01E-01≈ 9.07E+02±1.48E+00− 9.04E+02±1.04E+00
F19 9.14E+02±1.45E+00− 9.16E+02±6.03E+01− 9.06E+02±1.24E+00− 9.04E+02±9.42E-01
F20 9.14E+02±3.62E+00− 9.04E+02±2.71E-01≈ 9.07E+02±1.35E+00− 9.04E+02±9.01E-01
F21 5.00E+02±3.39E-13− 5.00E+02±2.68E-12− 5.00E+02±4.83E-13− 5.00E+02±4.88E-13
F22 9.72E+02±1.20E+01− 8.26E+02±1.46E+01+ 9.28E+02±7.04E+01− 8.63E+02±2.43E+01
F23 5.34E+02±2.19E-04≈ 5.36E+02±5.44E+00− 5.34E+02±4.66E-04≈ 5.34E+02±4.12E-04
F24 2.00E+02±1.49E-12− 2.12E+02±6.00E+01− 2.00E+02±5.52E-11− 2.00E+02±2.85E-14
F25 2.00E+02±1.96E+00+ 2.07E+02±6.07E+00≈ 2.17E+02±1.36E-01− 2.11E+02±9.02E-01

− 20 15 23
+ 2 6 1
≈ 3 4 1

“Mean Error” and “Std Dev” indicate the average and standard deviation of the function error values obtained in 25 runs, respectively. Wilcoxon’s rank sum
test at a 0.05 significance level is performed between CoDE and each of CLPSO, CMA-ES, and GL-25.
“−”, “+”, and “≈” denote that the performance of the corresponding algorithm is worse than, better than, and similar to that of CoDE, respectively.

3) Expanded Multimodal Functions F13–F14: On these two
test functions, CoDE and JADE exhibit similar performance
and outperform three other methods.

4) Hybrid Composition Functions F15–F25: These test
functions are much harder than others since each of them is
composed of 10 sub-functions. No method can reduce the aver-
age function error value below 10 on any test function. Overall,
the performance of CoDE is better than that of the four
competitors. It outperforms JADE, jDE, SaDE, and EPSDE on
three, three, four, and six test functions, respectively. In con-
trast, JADE, jDE, and SaDE cannot perform better than CoDE
even on one test function. It is interesting to note that for test
functions F15, F18, F19, F20, and F22, EPSDE is significantly
better than four others according to the Wilcoxon’s rank sum
test.

In summary, CoDE is the best among the five methods in
comparison on basic multimodal functions, expanded multi-
modal functions, and hybrid composition functions. It is the
second best on unimodal functions. The last three rows in
Table I indicate that, overall, CoDE is better than the four
competitors. The evolution of the mean function error values
derived from JADE, jDE, SaDE, EPSDE, and CoDE versus the
number of FES is plotted in Figs. 3 and 4 for some typical
test functions.

B. Comparison with CLPSO, CMA-ES, and GL-25
CoDE was also compared with three non-DE approaches,

namely, CLPSO [21], CMA-ES [22], and GL-25 [23]. CLPSO
is proposed by Liang et al. [21]. In CLPSO, a particle uses
the personal historical best information of all the particles
to update its velocity. CMA-ES, proposed by Hansen and
Ostermeier [22], is a very efficient and famous evolution
strategy (ES). There are actually several variants of CMA-ES,
such as the restart CMA-ES [24]. In this paper, the standard
CMA-ES [22] is used for comparison. GL-25, proposed by
Garcia-Martinez et al. [23], is a hybrid real-coded genetic
algorithm which combines the global and local search. In our
experiments, the parameter settings of these three methods
were the same as in their original papers. As in the ex-
periments in Section V-A, the number of FES in all these
methods was 300 000, and each method was run 25 times
on each test function. Table II summarizes the experimental
results.

Overall, CoDE significantly outperforms CLPSO, CMA-ES,
and GL-25. In fact, CoDE performs better than CLPSO, CMA-
ES, and GL-25 on 20, 15, and 23 out of 25 test functions,
respectively. CLPSO beats CoDE on two test functions, CMA-
ES is better than CoDE on six test functions, and GL-25
outperforms CoDE on only one test function.
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TABLE III

Experimental Results of CoDE Variants with Fixed Parameter Settings and CoDE Over 25 Independent Runs for 25 Test

Functions of 30 Variables with 300 000 FES

Function CoDE-132 CoDE-212 CoDE-312 CoDE
Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev Mean Error±Std Dev

F1 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
Unimodal
Functions

F2 1.64E-14±3.49E-14− 4.43E-13±9.94E-13− 1.35E-14±2.79E-14− 1.69E-15±3.95E-15
F3 1.39E+05±9.52E+04− 1.24E+05±7.09E+04− 1.28E+05±6.76E+04− 1.05E+05±6.25E+04
F4 2.32E-03±5.35E-03+ 3.11E-02±1.04E-01− 1.92E-03±5.05E-03+ 5.81E-03±1.38E-02
F5 4.21E+02±3.83E+02− 3.23E+02±3.79E+02≈ 3.26E+02±2.96E+02≈ 3.31E+02±3.44E+02
F6 1.60E-01±7.85E-01≈ 1.60E-01±7.85E-01≈ 1.60E-01±7.85E-01≈ 1.60E-01±7.85E-01

Basic Multi-
modal Func-
tions

F7 9.23E-03±9.13E-03≈ 9.35E-03±1.03E-02≈ 8.64E-03±8.51E-03≈ 7.46E-03±8.55E-03
F8 2.01E+01±1.07E-02≈ 2.02E+01±1.62E-01− 2.01E+01±1.19E-02≈ 2.01E+01±1.41E-01
F9 0.00E+00±0.00E+00≈ 8.05E-01±8.79E-01− 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
F10 4.07E+01±1.12E+01≈ 4.44E+01±1.36E+01≈ 4.32E+01±1.84E+01≈ 4.15E+01±1.16E+01
F11 1.21E+01±3.16E+00≈ 1.19E+01±3.22E+00≈ 1.17E+01±3.23E+00≈ 1.18E+01±3.40E+00
F12 2.59E+03±3.37+03≈ 2.93E+03±4.67E+03≈ 2.81E+03±3.06E+03≈ 3.05E+03±3.80E+03

Expanded
Multimodal
Functions

F13 1.52E+00±2.83E-01≈ 1.76E+00±3.86E-01− 1.52E+00±3.07E-01≈ 1.57E+00±3.27E-01

F14 1.23E+01±5.02E-01≈ 1.25E+01±4.48E-01− 1.23E+01±4.45E-01≈ 1.23E+01±4.81E-01

F15 3.95E+02±6.09E+01≈ 4.02E+02±5.31E+01≈ 4.02E+02±6.35E+01≈ 3.88E+02±6.85E+01
F16 7.19E+01±3.72E+01≈ 7.78E+01±4.78E+01− 7.49E+01±3.92E+01− 7.37E+01±5.13E+01
F17 7.12E+02±3.87E+01− 7.75E+01±4.14E+01− 8.13E+01±5.66E+01− 6.67E+01±2.12E+01

Hybrid
Composition
Functions

F18 9.04E+02±8.70E-01≈ 9.04E+02±9.60E-01≈ 9.04E+02±8.97E-01≈ 9.04E+02±1.04E+00
F19 9.04E+02±1.10E+00≈ 9.04E+02±1.12E+00≈ 9.04E+02±6.09E-01≈ 9.04E+02±9.42E-01
F20 9.04E+02±9.15E-01≈ 9.04E+02±1.09E+00≈ 9.04E+02±1.08E+00≈ 9.04E+02±9.01E-01
F21 5.00E+02±4.75E-13≈ 5.00E+02±5.54E-13≈ 5.00E+02±4.62E-13≈ 5.00E+02±4.88E-13
F22 8.67E+02±2.37E+01≈ 8.66E+02±2.85E+01≈ 8.70E+02±2.42E+01− 8.63E+02±2.43E+01
F23 5.34E+02±3.28E-04≈ 5.34E+02±4.09E-04≈ 5.34E+02±4.07E-04≈ 5.34E+02±4.12E-04
F24 2.00E+02±2.85E-14≈ 2.00E+02±2.85E-14≈ 2.00E+02±2.85E-14≈ 2.00E+02±2.85E-14
F25 2.11E+02±8.51E-01≈ 2.11E+02±8.64E-01≈ 2.11E+02±7.86E-01≈ 2.11E+02±9.02E-01

− 4 9 5
+ 1 0 1
≈ 20 16 19

“Mean Error” and “Std Dev” indicate the average and standard deviation of the function error values obtained in 25 runs, respectively. Wilcoxon’s rank sum
test at a 0.05 significance level is performed between CoDE variants with fixed parameter settings and CoDE.
“−”, “+”, and “≈” denote that the performance of the corresponding algorithm is worse than, better than, and similar to that of CoDE, respectively.

C. Random Selection of the Control Parameter Settings Versus
Deterministic Selection of the Control Parameter Settings

Each trial vector generation strategy (i.e., “rand/1/bin”,
“rand/2/bin”, or “current-to-rand/1”) in CoDE randomly se-
lects a control parameter setting from the three predetermined
parameter groups for generating a trial vector. One would like
to know what if each strategy uses a fixed control parameter
setting in the search. To address this issue, we tested 27 CoDE
variants. These variants were the same as the original CoDE
in Fig. 2 except that each trial vector generation strategy
used a fixed control parameter setting selected from the three
parameter groups.

For each variant, 25 independent runs were carried out
on 25 test functions. Due to the page limit, we only report
the experimental results of the three best variants among
all the 27 ones in Table III. The three best ones are as
follows.

1) CoDE-132: “rand/1/bin” uses the first parameter setting,
“rand/2/bin” uses the third one, and “current-to-rand/1”
uses the second one.

2) CoDE-212: “rand/1/bin” uses the second parameter set-
ting, “rand/2/bin” uses the first one, and “current-to-
rand/1” uses the second one.

3) CoDE-312: “rand/1/bin” uses the third parameter setting,
“rand/2/bin” uses the first one, and “current-to-rand/1”
uses the second one.

Table III shows that CoDE is significantly better than CoDE-
132, CoDE-212, and CoDE-312 on four, nine, and five out of
25 test functions, respectively. These three variants win CoDE
on one, zero, and one test function, respectively. Therefore,
we can conclude that the use of random control parameter
settings in CoDE does make the search more effective. This
should be because random selection of the control parameter
settings can increase the search diversity.

D. Random Selection of the Control Parameter Settings Versus
Adaptive Selection of the Control Parameter Settings

In CoDE, each control parameter setting has the same
probability to be used. Therefore, it can be regarded as an
alternating heuristic [25]. Recently, some adaptive mechanisms
have been proposed for adjusting the control parameters [4],
[25]. A question which arises naturally is whether CoDE
can be improved by adaptive control parameter selection
mechanism.

To study this question, we introduced the adaptive mecha-
nism proposed in [4] to CoDE and implemented an adaptive
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TABLE IV

Experimental Results of the Adaptive CoDE and CoDE Over 25

Independent Runs for 25 Test Functions of 30 Variables with

300 000 FES

Function Adaptive CoDE CoDE
Mean Error±Std Dev Mean Error±Std Dev

F1 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
Unimodal
Functions

F2 4.65E-16±1.14E-15+ 1.69E-15±3.95E-15
F3 1.01E+05±5.91E+04≈ 1.05E+05±6.25E+04
F4 6.61E-03±1.45E-02≈ 5.81E-03±1.38E-02
F5 4.87E+02±4.31E+02− 3.31E+02±3.44E+02
F6 1.60E-01±7.85E-01≈ 1.60E-01±7.85E-01

Basic Multi-
modal Func-
tions

F7 8.10E-03±9.19E-03≈ 7.46E-03±8.55E-03
F8 2.01E+01±1.45E-01≈ 2.01E+01±1.41E-01
F9 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00
F10 4.31E+01±1.41E+01≈ 4.15E+01±1.16E+01
F11 1.15E+01±3.00E+00≈ 1.18E+01±3.40E+00
F12 3.07E+03±5.05E+03≈ 3.05E+03±3.80E+03

Expanded
Multimodal
Functions

F13 1.49E+00±3.32E-01≈ 1.57E+00±3.27E-01

F14 1.23E+01±5.53E-01≈ 1.23E+01±4.81E-01

F15 3.97E+02±6.73E+01≈ 3.88E+02±6.85E+01
F16 7.48E+01±4.97E+01≈ 7.37E+01±5.13E+01
F17 7.03E+01±4.04E+01≈ 6.67E+01±2.12E+01

Hybrid
Composition
Functions

F18 9.04E+02±1.05E+00≈ 9.04E+02±1.04E+00

F19 9.05E+02±1.11E+00− 9.04E+02±9.42E-01
F20 9.05E+02±9.69E-01− 9.04E+02±9.01E-01
F21 5.00E+02±4.70E-13≈ 5.00E+02±4.88E-13
F22 8.61E+02±2.09E+01≈ 8.63E+02±2.43E+01
F23 5.34E+02±4.18E-04≈ 5.34E+02±4.12E-04
F24 2.00E+02±2.85E-14≈ 2.00E+02±2.85E-14
F25 2.11E+02±7.94E-01≈ 2.11E+02±9.02E-01

− 3
+ 1
≈ 21

“Mean Error” and “Std Dev” indicate the average and standard deviation of
the function error values obtained in 25 runs, respectively. Wilcoxon’s rank
sum test at a 0.05 significance level is performed between the adaptive CoDE
and CoDE.
“−”, “+”, and “≈” denote that the performance of the corresponding algorithm
is worse than, better than, and similar to that of CoDE, respectively.

CoDE. For each trial vector generation strategy at generation
G, the adaptive CoDE records:

1) nk,G: the number of the trial vectors generated by this
strategy with control parameter setting k (k = 1, 2, and
3);

2) nsk,G: the number of the trial vectors generated by this
strategy with control parameter setting k (k = 1, 2, and
3) which can enter the next generation.

It also needs an additional parameter, LP, which is called
the learning period. During its first LP generations, each trial
vector generation strategy chooses the three control parameter
settings with the same probability (i.e., 1/3). When the gen-
eration number G is larger than LP, the probability, pk,G, of
using control parameter setting k is calculated as follows:

Sk,G =

∑G−1
g=G−LP nsk,g

∑G−1
g=G−LP nk,g

+ ς (10)

and

pk,G =
Sk,G

∑3
k=1 Sk,G

(11)

where k = 1, 2, and 3, G > LP , the first term on the right-hand
side of (10) is the success rate of control parameter setting k
during the previous LP generations, and ς is set to 0.01 in
our experiments to prevent Sk,G from becoming zero. We use
the roulette wheel selection to select one control parameter
setting based on (11). Clearly, the larger Sk,G, the larger the
probability pk,G.

Following the suggestion in [4], LP is set to 50 in our
experimental studies. Except adaptively choosing the control
parameter settings, all the other parts of the adaptive CoDE
are the same as in the original version of CoDE.

Table IV indicates that the adaptive CoDE outperforms
CoDE on one unimodal function and CoDE wins the adaptive
CoDE also on another unimodal function. The adaptive CoDE
performs similarly with CoDE on basic multimodal functions
and expanded multimodal functions. On hybrid composition
functions, two methods perform similarly on nine out of 11
test functions and CoDE wins on two such functions.

From the last three rows of Table IV, we can conclude that
the overall performance of CoDE is slightly better than that
of the adaptive CoDE. It implies that the direct use of the
mechanism from [4] in CoDE cannot improve the performance
of CoDE very much. Therefore, much effort is needed to study
how to adapt the control parameter settings of CoDE in an
adaptive manner.

VI. Conclusion

Many experiences in using different trial vector generation
strategies and the DE control parameter settings have been
reported in the literature. A comprehensive use of these
experiences should be an effective way for improving the DE
performance. CoDE, proposed in this paper, represented one
of the first attempts along this direction. It employed three
trial vector generation strategies and three control parameter
settings. These strategies and parameter settings have distinct
advantages and therefore they can complement one another. In
CoDE, each strategy generated its trial vector with a parameter
setting randomly selected from the parameter candidate pool.
The structure of CoDE is simple and it is easy to implement.
Moreover, under our framework, a user can easily build his/her
own strategy candidate pool and parameter candidate pool for
solving his/her different problems.

The experimental studies in this paper were carried out
on 25 global numerical optimization problems used in the
CEC2005 special session on real-parameter optimization.
CoDE was compared with four other state-of-the-art DE vari-
ants, i.e., JADE, jDE, SaDE, and EPSDE, and three non-DE
variants, i.e., CLPSO, CMA-ES, and GL-25. The experimental
results suggested that its overall performance was better than
the seven competitors. In addition, the effectiveness of random
selection of control parameter settings for the trial vector
generation strategies was experimentally studied.

In the future, we will generalize our work to other EAs
for other hard optimization problems. For example, it is
very interesting to study how to combine several different
well-studied EAs in our framework such that the resultant
algorithms can effectively complement one another. It is also
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worthwhile building a knowledge database for storing the
experiences and properties of the existing algorithms.

The MATLAB source codes of the proposed CoDE,
the adaptive CoDE, and other seven methods (i.e.,
JADE, jDE, SaDE, EPSDE, CLPSO, CMA-ES, and GL-
25) can be downloaded from Q. Zhang’s homepage:
http://dces.essex.ac.uk/staff/qzhang/.

Acknowledgment

The authors would like to thank Dr. J. Zhang, Dr. J. Brest,
Dr. R. Mallipeddi, Dr. N. Hansen, and Dr. C. Garcia-Martinez
for providing the source codes of JADE, jDE, EPSDE, CMA-
ES, and GL-25, respectively, and Dr. P. N. Suganthan for
providing the source codes of SaDE and CLPSO. Y. Wang
appreciates Y. Yang’s inspiration.

References

[1] R. Storn and K. Price, “Differential evolution: A simple and efficient
adaptive scheme for global optimization over continuous spaces,” Int.
Comput. Sci. Inst., Berkeley, CA, Tech. Rep. TR-95-012, 1995.

[2] R. Storn and K. V. Price, “Differential evolution: A simple and efficient
heuristic for global optimization over continuous spaces,” J. Global Opt.,
vol. 11, no. 4, pp. 341–359, Dec. 1997.

[3] A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control
in evolutionary algorithms,” IEEE Trans. Evol. Comput., vol. 3, no. 2,
pp. 124–141, Jul. 1999.

[4] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution
algorithm with strategy adaptation for global numerical optimization,”
IEEE Trans. Evol. Comput., vol. 13, no. 2, pp. 398–417, Apr. 2009.

[5] S. Das, A. Abraham, U. K. Chakraborty, and A. Konar, “Differential
evolution using a neighborhood-based mutation operator,” IEEE Trans.
Evol. Comput., vol. 13, no. 3, pp. 526–553, Jun. 2009.

[6] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama, “Opposition-
based differential evolution,” IEEE Trans. Evol. Comput., vol. 12,
no. 1, pp. 64–79, Feb. 2008.

[7] J. Ronkkonen, S. Kukkonen, and K. V. Price, “Real parameter opti-
mization with differential evolution,” in Proc. IEEE CEC, vol. 1. 2005,
pp. 506–513.

[8] H. Y. Fan and J. Lampinen, “A trigonometric mutation operator to
differential evolution,” J. Global Optim., vol. 27, no. 1, pp. 105–129,
2003.

[9] E. Mezura-Montes, J. Velázquez-Reyes, and C. A. Coello Coello,
“Modified differential evolution for constrained optimization,” in Proc.
CEC, 2006, pp. 332–339.

[10] V. Feoktistov and S. Janaqi, “Generalization of the strategies in differ-
ential evolution,” in Proc. 18th Int. Parallel Distributed Process. Symp.,
2004, pp. 165–170.

[11] E. Mezura-Montes, J. Velázquez-Reyes, and C. A. C. Coello, “A com-
parative study of differential evolution variants for global optimization,”
in Proc. GECCO, 2006, pp. 485–492.

[12] J. Zhang and A. C. Sanderson, “JADE: Adaptive differential evolution
with optional external archive,” IEEE Trans. Evol. Comput., vol. 13,
no. 5, pp. 945–958, Oct. 2009.

[13] R. Gämperle, S. D. Müller, and P. Koumoutsakos, “A parameter study
for differential evolution,” in Advances in Intelligent Systems, Fuzzy
Systems, Evolutionary Computation, A. Grmela and N. E. Mastorakis,
Eds. Interlaken, Switzerland: WSEAS Press, 2002, pp. 293–298.

[14] S. Das, A. Konar, and U. K. Chakraborty, “Two improved differential
evolution schemes for faster global search,” in Proc. GECCO, Jun. 2005,
pp. 991–998.

[15] J. Liu and J. Lampinen, “A fuzzy adaptive differential evolution al-
gorithm,” Soft Comput. A Fusion Found. Methodol. Applicat., vol. 9,
no. 6, pp. 448–462, 2005.

[16] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-
adapting control parameters in differential evolution: A comparative
study on numerical benchmark problems,” IEEE Trans. Evol. Comput.,
vol. 10, no. 6, pp. 646–657, Dec. 2006.

[17] J. Teo, “Exploring dynamic self-adaptive populations in differential
evolution,” Soft Comput., vol. 10, no. 8, pp. 637–686, 2006.

[18] R. Mallipeddi, P. N. Suganthan, Q. K. Pan, and M. F. Tasgetiren,
“Differential evolution algorithm with ensemble of parameters and
mutation strategies,” Appl. Soft Comput., 2010, to be published.

[19] K. V. Price, “An introduction to differential evolution,” in
New Ideas Optimization. London, U.K.: McGraw-Hill, 1999,
pp. 293–298.

[20] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger,
and S. Tiwari, “Problem definitions and evaluation criteria for the CEC
2005 special session on real-parameter optimization,” Nanyang Technol.
Univ., Singapore, IIT Kanpur, Kanpur, India, Tech. Rep. KanGAL
#2005005, May 2005.

[21] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive
learning particle swarm optimizer for global optimization of multimodal
functions,” IEEE Trans. Evolut. Comput., vol. 10, no. 3, pp. 281–295,
Jun. 2006.

[22] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evol. Comput., vol. 9, no. 2, pp.
159–195, 2001.

[23] C. Garcia-Martinez, M. Lozano, F. Herrera, D. Molina, and A. M.
Sanchez, “Global and local real-coded genetic algorithms based on
parent-centric crossover operators,” Eur. J. Oper. Res., vol. 185, no. 3,
pp. 1088–1113, Mar. 2008.

[24] A. Auger and N. Hansen, “A restart CMA evolution strategy with
increasing population size,” in Proc. IEEE CEC, Sep. 2005, pp.
1769–1776.
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