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Abstract. In terms of the concepts of state and state transition, a new heuris-
tic random search algorithm named state transition algorithm is proposed. For

continuous function optimization problems, four special transformation opera-
tors called rotation, translation, expansion and axesion are designed. Adjusting

measures of the transformations are mainly studied to keep the balance of ex-

ploration and exploitation. Convergence analysis is also discussed about the
algorithm based on random search theory. In the meanwhile, to strengthen

the search ability in high dimensional space, communication strategy is in-

troduced into the basic algorithm and intermittent exchange is presented to
prevent premature convergence. Finally, experiments are carried out for the

algorithms. With 10 common benchmark unconstrained continuous functions

used to test the performance, the results show that state transition algorithms
are promising algorithms due to their good global search capability and con-

vergence property when compared with some popular algorithms.

1. Introduction. The concept of state means to a situation which a material sys-
tem maintains, and it is characterized by a group of physical qualities. The process
of a system turning from a state to another is called state transition, which can be
described by a state transition matrix. The idea of state transition was created by a
Russian mathematician named Markov when he expected to represent a specific sto-
chastic process (known as Markov process)[22]. Not only in communication theory
but also in modern control theory, state transition matrix is of great importance.
For instance, in modern control theory, it can determine the stability of a system.

In almost all branches of engineering, including system design, tactical planning,
system analysis, process management and control, and model parameter adjust-
ment, optimization techniques have found wide applications[30]. Generally speak-
ing, the methods used for solving such optimization problems can be classified into
two categories: deterministic and stochastic, in which, stochastic methods are sub-
divided into evolutionary algorithms and metaheuristic algorithms. The traditional
deterministic algorithms include Hooke-Jeeves pattern search[11] and hill-climbing,
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evolutionary algorithms contain genetic algorithm (GA)[8, 7], evolutionary pro-
gramming, evolution strategies, and genetic programming, while metaheuristic al-
gorithms consist of simulated annealing, particle swarm optimization (PSO)[12, 25],
differential evolution(DE) algorithm[24], etc. On the other hand, the commonly
used numerical algorithms for engineering optimization problems can also be cate-
gorized into two classes: direct search methods and gradient-based methods. The
direct search methods comprise the simplex search, Powell’s conjugate direction
method and random search, while the gradient-based methods include the New-
ton’s (basic-, modified-, quasi-) and conjugate gradient methods[15]. In the same
time, hybrid methods, combining of deterministic and stochastic or direct search and
gradient-based, are also proposed to draw on each other’s strengths[2, 29, 16, 32].

According to the No Free Lunch Theorem[28], no search algorithm is better than
other algorithms on the space of all possible problems. This paper introduces a
new method for optimization of continuous nonlinear functions, which belongs to
metaheuristic random search. Because of its foundation on state and state transi-
tion, the method is called state transition algorithm (STA)[33, 34]. The algorithm
has roots in three main component methodologies. One is the random optimization
theory, the others are population-based approach and then space transformation
method. In this paper, it focuses on four operators named rotation, translation,
expansion and axesion transformation as well as the communication strategy in
state transition algorithm. Compared with some state-of-the-art optimization al-
gorithms, RCGA[26], CLPSO[14], and SaDE[20], which are improved versions of
GA, PSO and DE, the experimental results show that STAs are comparable and
promising algorithms.

2. The basic state transition algorithm. Considering the following uncon-
strained optimization problem

min
x∈<n

f(x). (1)

In a deterministic view, it usually adopts iterative method to solve the problem

xk+1 = xk + akdk, (2)

where, xk is the kth iteration point, ak is the kth step size and dk is the kth search
direction.

The common selection of a step is by exact line search or inexact line search.
While the techniques of search direction include steepest descent method, conju-
gate gradient methods, Newton’s methods, alternating directions, and conjugate
direction methods[31].

In a way, the iterative methods aim to search for a direction and a step in an itera-
tion. Though these methods utilize the gradient information explicitly or implicitly,
they have their inherent defects. For one thing, it is computationally difficult. For
another, it only indicates the local information. In the view of global optimization,
the direction of gradient is just a way standing for direction, and it has no substan-
tial effect on searching for a global optimum. If the iterative method is concerned in
a state and state transition way, then an iterative point can be regarded as a state,
the process of searching for a direction and a step will equate to a state transition
process, and through a state transition, a new state will be created.

In the point of stochastic, it can also understand the evolutionary algorithms
and metaheuristic algorithms in a state and state transition way. For example,
genetic algorithm, its each individual of a generation can be considered as a state,
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and the updating process of using genetic operators such as selection, crossover and
mutation can equate to state transition processes. In the same way, particle swarm
optimization, the flock updating its velocity and position, and differential evolution,
adding the difference vector of two randomly chosen vectors to a target vector, can
also be regarded as state transition processes.

In terms of the concept of state and state transition, a solution to a specific
optimization problem can be described as a state, the operators of optimization
algorithms can be considered as state transition, and the process to update current
solution will become a state transition process.

Through the above analysis and discussion, it defines the following form of state
transition {

xk+1 = Akxk +Bkuk
yk+1 = f(xk+1)

, (3)

where, xk stands for a state, corresponding to a solution to the optimization prob-
lem; then, Ak and Bk are state transition matrixes, which can be regarded as
operators of optimization algorithm; uk is the function of state xk and historical
states; while f is the cost function or evaluation function.

2.1. State transformation operators. As a matter of fact, operators such as
reflection, contraction, expansion and rotation are widely used in simplex optimiza-
tion method[19, 3, 13], which is especially popular in the fields of chemistry, chemical
engineering, and medicine. However, they always fail to lead to continued progress
and are not applicable to a wide range of functions.

In the theory of space and transformation, rotation matrices are only defined
for two and three dimensional transformation. For example, the two dimensional

rotation matrix is
[
cosθ −sinθ
sinθ cosθ

]
.

Using various types of space transformation for reference, in this paper, it de-
fines the following four special state transformation operators to solve continuous
function optimization problems.
(1) Rotation transformation

xk+1 = xk + α
1

n‖xk‖2
Rrxk, (4)

where, xk ∈ <n, α is a positive constant, called rotation factor; Rr ∈ <n×n, is
random matrix with its entries obeying the uniform distribution in the range of [-1,
1] and ‖ · ‖2 is 2-norm of vector or Euclidean norm. Then, it will prove that the
rotation transformation has the function of searching in a hypersphere.

Proof.

‖xk+1 − xk‖2 = ‖α 1

n‖xk‖2
Rrxk‖2

=
α

n‖xk‖2
‖Rrxk‖2

≤ α

n‖xk‖2
‖Rr‖m∞‖xk‖2 ≤ α

(5)

(2) Translation transformation

xk+1 = xk + βRt
xk − xk−1
‖xk − xk−1‖2

, (6)
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where, β is a positive constant, called translation factor; Rt ∈ < is a random variable
with its components obeying the uniform distribution in the range of [0,1]. It is
obvious to find the translation transformation has the function of searching along
a line from xk−1 to xk at the starting point xk, with the maximum length of β.
(3) Expansion transformation

xk+1 = xk + γRexk, (7)

where, γ is a positive constant, called expansion factor; Re ∈ <n×n is a random
diagonal matrix with its elements obeying the Gaussian distribution (in this study,
standard normal distribution). It is also obvious to find the expansion transforma-
tion has the function of expanding the components in xk to the range of [-∞, +∞],
searching in the whole space.
(4) Axesion transformation

xk+1 = xk + δRaxk, (8)

where, δ is a positive constant, called axesion factor; Ra ∈ <n×n is a random
diagonal matrix with its entries obeying the Gaussian distribution and only one
random position having nonzero value. The axesion transformation aims to search
along the axes and strengthens single dimensional search.

2.2. State transformation algorithm. Before the state transition algorithm, it
is necessary to introduce the basic random optimization[17, 1, 9, 10]. Considering
the above unconstrained optimization problem, the procedure of the basic random
optimization can be outlined in the following pseudocode.

1: Initialize feasible solution x0, and set k ← 0
2: repeat
3: k ← k + 1
4: Generate a Gaussian random number vector r
5: xtrail ← xk−1 + r
6: if f(xtrail) < f(xk−1) then
7: xk ← xtrail
8: else
9: xk ← xk−1

10: end if
11: until the specified termination criterion is met

For one thing, as a metaheuristic random method, the state transition algorithm
is similar to the basic random optimization[17]. The only difference is that a can-
didate solution set is generated by the four special operators, while a new trail is
selected following the same way as that of the basic random optimization, which
means that the “greedy criterion” is used in selecting the new state. By the way,
a candidate solution set is created by some times of transformation. The times of
the transformation or the size of the set is called search enforcement (SE ), and the
translation operator is only performed when a better new trail is found.

For another, as a stochastic algorithm[5], the dealing with dynamic balance be-
tween diversification (exploration of the solution space) and intensification (ex-
ploitation of the accumulated knowledge) is also significant in state transition algo-
rithm. Due to their intrinsic properties, the rotation is chosen for exploitation, the
expansion is for exploration, the translation is selected as to maintain equilibrium
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between them, and axesion is proposed to strength the single dimensional search.
The main process of STA is shown in the pseudocode as follows

1: repeat
2: if α < αmin then
3: α← αmax

4: end if
5: Best ← expansion(funfcn,Best,SE,β,γ) . expansion transformation
6: Best ← rotation(funfcn,Best,SE,α,β) . rotation transformation
7: Best ← axesion(funfcn,Best,SE,β,δ) . axesion transformation
8: α← α

fc

9: until the specified termination criterion is met

As for detailed explanations, expansion function in above pseudocode is given as
follows for example

1: oldBest ← Best
2: fBest ← feval(funfcn,oldBest)
3: State ← op expand(Best,SE,γ)
4: [newBest,fGBest] ← fitness(funfcn,State)
5: if fGBest < fBest then . greedy criterion
6: fBest ← fGBest
7: Best ← newBest
8: State ← op translate(oldBest,Best,SE,β)
9: [newBest,fGBest] ← fitness(funfcn,State)

10: if fGBest < fBest then . greedy criterion
11: fBest ← fGBest
12: Best ← newBest
13: end if
14: end if

2.3. Parameters analysis in STA. In state transition algorithm, there are five
important parameters, namely search enforcement(SE ), rotation factor α, transla-
tion factor β, expansion factor γ and axesion factor δ. It is easy to understand that
the larger the search enforcement, the higher the intensity of search, and vise versa.
However, the larger search enforcement will cause larger computational complexity.
In this paper, the search enforcement is recommended to use the same size as the
dimension of the optimization problem.

When SE is constant, taking the exploration and exploitation into consideration,
the strategy of adjusting parameters of the four operators is significant. To make the
deeper exploitation, the smaller rotation factor is needed. Especially, the rotation
factor will vary in a declining way from a positive constant till zero to gain a high
precision solution. In the meanwhile, there are two schemes to regulate the α. One
is to adjust the parameter in an inner loop, namely, decreasing the rotation factor
from a start constant to the end in the operation of rotation transformation[33].
The other is to adjust the parameters in an outside loop, that is to say, decreasing
the rotation factor according to the iterations. To balance the global search and
local search timely, the latter scheme is adopted in the paper; however, the rota-
tion factor is decreasing itself from a maximum value to a minimum value in an
exponential way with base fc, which is called lessening coefficient[34], as described
in the pseudocode of STA. By the way, extra tests have testified the effectiveness
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of the scheme.
As for the remained control parameters, for example, the larger the translation

factor, the longer STA searches along a straight line. However, the magnitude of
translation factor has great influence on exploitation and exploration. The large
translation factor will facilitate the exploration, while the small translation factor
benefits the exploitation. Similarly, the same phenomenon exists in the selection
of expansion and axesion factors. Taking the complexity of adjusting strategies for
these control parameters into consideration, we keep them fixed in current version
of STA for simplicity.

2.4. The convergence analysis of STA. The convergence of stochastic opti-
mization algorithms has been heatedly discussed. For instance, genetic algorithm
was analyzed by means of homogeneous finite Markov chain[21], particle swarm
optimization was studied to investigate particle trajectories in a discrete system
view[4], and convergence property of differential evolution was also discussed in[24].

As a metaheuristic random optimization algorithm, the convergence analysis of
STA will follow the same way as random search methods. In fact, the probability
of random search algorithm for finding global minimum being equal to 1 was stated
by Solis and Wets[23]. That is to say, the STA will satisfy the similar convergence
performance of random optimization algorithm, and readers who are interested in
convergence analysis are referred to their work for details.

3. Communication strategy into state transition algorithm. In a way, the
basic state transition algorithm is individual-based, and an individual searches in
its neighborhood. The difference between the basic state transition algorithm and
other random optimizations is that the search space is normalized or specialized.

The population-based approach is prevalent in metaheuristic algorithms, such
as genetic algorithm, particle swarm optimization and differential evolution. Let’s
name the basic state transition algorithm STAI, the improved state transition al-
gorithm based on population is called STAII with the number of states denoted
as SN. In the meanwhile, some communication strategies are necessary to man-
age the individuals for sharing information, which is important in population-based
methods.

3.1. Crossover operator. Individual communication can be implemented in var-
ious ways, of which crossover operation is quite common, especially in genetic algo-
rithms.

Let X1 and X2 be individual components of current generation, Y1 and Y2 are
the offspring components, some canonical crossover operators are displayed in the
following.
(1) Michalewicz’s arithmetical crossover[18]{

Y1 = αX1 + (1− α)X2

Y2 = αX2 + (1− α)X1
, (9)

where, α is either a constant or a variable whose value depends on the age of
population.
(2) Wright’s linear crossover[27]

Y1 = 1.5X1 − 0.5X2, Y2 = −0.5X1 + 1.5X2, Y3 = (X1 +X2)/2 (10)
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(3) Kalyanmoy Deb’s simulated binary crossover[6]{
Y1 = 0.5[(1− β)X1 + (1 + β)X2]
Y2 = 0.5[(1 + β)X1 + (1− β)X2]

, (11)

where, β is a random variable, obeying the following probability distribution{
p(β) = 0.5(ηc + 1)βηc 0 ≤ β ≤ 1,

p(β) = 0.5(ηc + 1) 1
βηc+2 β > 1,

(12)

here, p(·) is the probability density function, ηc is the distribution index, which
determine how well spread the children will be inherited from their parents.
(4) The proposed crossover {

Y1 = δX1 + (1− δ)X2,
Y2 = ηX1 + (1− η)X2,

(13)

where, δ and η are independent variables, which obey the 0-1 distribution.
In this proposed crossover, crossover operation means for each component of a

pair of individuals, components exchange or maintain their information completely.

3.2. Intermittent exchange. Different from other population based algorithms,
all of the individuals in STAII are elites, and they develop themselves trough state
transformation, which is referred as self learning. When the communication strat-
egy is introduced, the individual can contact with each other to better develop
themselves. However, it may bring about some disadvantageous effects. If the fre-
quency of individual communication is too high, individuals are apt to imitate each
other utterly, which will cause premature convergence. In this paper, intermittent
exchange is proposed to solve the issue, that is to say, individual communication
occurs at a certain frequency, where the frequency is named communication fre-
quency (CF ).

The communication strategy is adopted to share information among individuals,
and it is regulated by communication frequency. If CF is small enough, it will
equate the situation without the communication strategy. When CF is too large,
individuals are easily trapped into imitating each other, causing the premature con-
vergence, that is to say, a moderate CF is appropriate. In this paper, we recommend
to use the same magnitude as square root of the maximum iterations.

When the exchange condition is satisfied, the proposed crossover operator will
be performed. Each state will communicate with all of the other states, to make
sure that useful information is completely shared.

3.3. The framework of STA with communication strategy. Through the
above discussion and analysis, by introducing in communication strategy, the pseu-
docode of the kernel of state transition algorithm can be described as shown in the
following

1: repeat
2: if α < αmin then
3: α← αmax

4: end if
5: State ← self learning(funfcn,State,SE,α,β,γ,δ) . self learning
6: α← α

fc

7: if mod(iter,CF)==0 then . intermittent exchange
8: State ← communication(funfcn,State)
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9: end if
10: [Best,fBest] ← fitness(funfcn,State)
11: until the specified termination criterion is met

In the process of the algorithm, the self learning means each state in the state set
will be performed on four state transformation operators, while in communication
function, the intermittent exchange is adopted at intervals. The flowchart of the
algorithm is outlined in Figure 1.

Begin

Initialize a state set

Current state set

State 
transformations

Updated state set

Intermittent
exchange

Satisfy the 
criterion

End

Rotation
Translation
Expansion
Axesion

Yes

No

Figure 1. the flowchart of STAII

4. Experiments and results. To compare the proposed state transition algo-
rithm with previously mentioned RCGA, CLPSO and SaDE, two experiments are
arranged. The first experiment is mainly for two dimensional functions, and the
other focuses on ten dimensional functions test. In the same time, both STAI and
STAII are carried out, for comparison with other algorithms as well as themselves.

4.1. Test functions. In order to test the performance of STA, ten common bench-
mark functions are selected for the experiment. Seven functions are multidimen-
sional functions of various modals and the other three are two dimensional functions,
which are listed in Table 1, while the landscapes of two dimensional functions are
plotted in Figure 2.
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(a) f1 (b) f2 (c) f3

(d) f4 (e) f5 (f) f6

(g) f7 (h) f8 (i) f9

(j) f10

Figure 2. Plots of the two dimensional functions from f1 to f10
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Table 1. Benchmark functions for test in this paper

Name of function Function definition Range fmin
Spherical f1 =

∑n
i=1 x

2
i [-100,100] 0

Rastrigin f2 =
∑n
i=1(x2i − 10cos(2πxi) + 10) [-5.12,5.12] 0

Griewank f3 = 1
4000

∑n
i=1 x

2
i −

∏n
i cos|

xi√
i
|+ 1 [-600,600] 0

Rosenbrock f4 =
∑n
i=1(100(xi+1 − x2i )2 + (xi − 1)2) [-30,30] 0

Schewefel f5 =
∑n
i=1[−xisin(

√
|xi|)] [-500,500] -418.9829n

Ackley
f6 = 20 + e− 20exp(−0.2

√
1
n

∑n
i=1 x

2
i )

−exp( 1
n

∑n
i=1 cos(2πxi))

[-32,32] 0

Michalewicz f7 =
∑n
i=1 sin(xi)sin(

ix2i
π

)20 [0, π] -

Schaffer f8 = 0.5 +
sin(

√
x21+x

2
2)

2−0.5

(1+0.001(x21+x
2
2))

2 [-100,100] 0

Easom
f9 = −cos(x1)cos(x2)×
exp(−(x1 − π)− (x2 − π))

[-100,100] -1

Goldstein-Price
f10 = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x21
−14x2 + 6x1x2 + 3x22)]× [30 + (2x1 − 3x2)2

(18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22)]

[-2,2] 3

4.2. Parameters setting. All of the algorithms were run on MATLAB (Version
R2010b) software platform. For simplicity and normalization, the experiment spec-
ifies all the control parameters of transformation operators in STAI and STAII
starting at 1. Commonly, the variation of a parameter follows a linear, exponential
or a logistic way. In this paper, the exponential way is accepted for its rapidity,
of which the base is 2 in the experiment. In view of the operational precision of
MATLAB in short format, the minimum α factor fixed at 1e-4 is enough for the
situation.

As for RCGA, we use the same parameter settings as in[26]. Then, for CLPSO
and SaDE, we use the MATLAB codes provided by the author in[14, 20] with minor
revisions for this experiment.

Programs were run independently for 30 trails, and for each trail, the population
scale is 30, and the maximum iteration is 1000. The detailed parameters of STAI
and STAII are shown in Table 2 and Table 3, respectively.

Table 2. Parameters setting of STAI

Parameter Value

SE 30

α 1 → 1e-4

β 1
γ 1

δ 1
fc 2

4.3. Results and discussion. For comparison, some common statistics are in-
troduced. The best means the minimum of the results, the worst indicates the
maximum of the results, and then it follows the mean, median and st.dev.(standard
deviation). In some way, these statistics are able to evaluate the search ability and
solution accuracy, reliability and convergence as well as stability. To be more spe-
cific, the best indicates the global search ability and solution accuracy, the worst
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Table 3. Parameters setting of STAII

Parameter Value

SN 30

SE 10

CF 50
α 1 → 1e-4

β 1
γ 1

δ 1

fc 2

and the mean signify the reliability and convergence, while the median and st.dev.
correspond to the stability.

Results for two dimensional functions optimization are listed in Table 4, while
results for ten dimensional functions optimization can be found in Table 5. On the
other hand, illustrations of the average fitness in 30 simulations are given in Figure
3 and Figure 4 for two dimensional and ten dimensional functions, respectively. The
average fitness curve can visually depict the search ability and convergence perfor-
mance. In the following paragraphs the analysis of the results for each functions
will be discussed separately.

Spherical Function: as can be seen from the results, all of the algorithms can
find the global optimum with high solution precision and have good reliability as
well as stability for this function in terms of two and ten dimensions. But the STAI
and STAII are able to search much deeper than other three algorithms, which can
also be observed in subfigure (A) of Figure 3 and Figure 4. In the subfigure (A), we
can see that STAs can converge much faster than the remained methods. While for
STAI and STAII, it is found that STAI has a little faster convergence performance
than that of STAII.

Rastrigin Function: we can see from the results that all of the algorithms
can find the global optimum and have good reliability as well as stability in two
dimension. For the ten dimensional problem, the global optimum can also be found
by all algorithms; however, STAI and STAII have better statistical performances
than other three algorithms especially described by the worst. RCGA and SaDE
can not achieve the best occasionally, and the mean of RCGA is not satisfactory.
From subfigure (B) of Figure 3 and Figure 4, we can also find that STAs converge
much faster than other algorithms, and higher solution precision can be obtained.
In this time, the process of STAII is slightly faster than that of STAI.

Griewank Function: from the results, we can find that most algorithms have
the ability to achieve the best and have both reliability and stability in the two di-
mensional function except the RCGA. While for the ten-dimension function, these
methods are able to find the global optimum but the statistical performances are
not satisfactory except STAII, the results of which are excellent. In subfigure (C)
of Figure 3 and Figure 4, it can be found that STAII converge fastest and have
highest solution precision of all.

Rosenbrock Function: all of the algorithms have no problem to find the global
optimum for this function in two-dimensional space, but the worst of RCGA indicate
that it is not reliable and a bit deficient for the function. Regarding corresponding
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Table 4. Comparisons among various algorithms on test functions(2D)

Fcn Statistic RCGA CLPSO SaDE STAI STAII

best 1.5795e-028 2.7344e-091 2.9229e-196 0 0

median 4.9090e-024 2.6808e-087 4.2548e-189 0 0

f1 mean 1.5458e-022 5.9580e-082 6.6729e-188 0 0
worst 2.5849e-021 1.7771e-080 9.6210e-187 0 0

st.dev. 4.7939e-022 3.2440e-081 0 0 0

best 0 0 0 0 0

median 0 0 0 0 0
f2 mean 0 0 0 0 0

worst 0 0 0 0 0

st.dev. 0 0 0 0 0

best 0 0 0 0 0
median 0.0074 0 0 0 0

f3 mean 0.0042 1.2460e-009 0 0 0

worst 0.0074 3.7377e-008 0 0 0
st.dev. 0.0037 6.8241e-009 0 0 0

best 7.0832e-008 9.2890e-010 0 1.0092e-012 4.2592e-014

median 0.0085 3.9984e-007 0 1.0900e-011 3.9400e-012

f4 mean 1.0364 3.9260e-005 0 1.2571e-011 4.4217e-012
worst 26.2801 6.3652e-004 0 4.7764e-011 1.4588e-011

st.dev. 4.7802 1.4088e-004 0 1.0692e-011 3.9023e-012

best -837.9658 -837.9658 -837.9658 -837.9658 -837.9658

median -837.9658 -837.9658 -837.9658 -837.9658 -837.9658
f5 mean -822.1740 -837.9658 -837.9658 -837.9658 -837.9658

worst -719.5274 -837.9658 -837.9658 -837.9658 -837.9658

st.dev. 40.9496 0 0 1.5939e-013 1.0970e-013

best 2.0428e-014 -8.8818e-016 -8.8818e-016 -8.8818e-016 -8.8818e-016
median 3.1681e-012 -8.8818e-016 -8.8818e-016 -8.8818e-016 -8.8818e-016

f6 mean 4.7516e-011 -8.8818e-016 -8.8818e-016 -8.8818e-016 -8.8818e-016

worst 9.6937e-010 -8.8818e-016 -8.8818e-016 -8.8818e-016 -8.8818e-016
st.dev. 1.8319e-010 0 0 0 0

best -1.8013 -1.8013 -1.8013 -1.8013 -1.8013

median -1.8013 -1.8013 -1.8013 -1.8013 -1.8013

f7 mean -1.8013 -1.8013 -1.8013 -1.8013 -1.8013
worst -1.8013 -1.8013 -1.8013 -1.8013 -1.8013

st.dev. 9.0336e-016 9.0336e-016 9.0336e-016 2.2063e-011 7.6618e-012

best 0 0 0 0 0

median 0.0097 9.3299e-012 0 0 0
f8 mean 0.0071 4.1836e-004 6.4773e-004 0 0

worst 0.0097 0.0097 0.0097 0 0

st.dev. 0.0044 0.0018 0.0025 0 0

best -1.0000 -1.0000 -1.0000 -1.0000 -1.0000

median -1.0000 -1.0000 -1.0000 -1.0000 -1.0000
f9 mean -1.0000 -1.0000 -1.0000 -1.0000 -1.0000

worst -1.0000 -1.0000 -1.0000 -1.0000 -1.0000
st.dev. 0 0 0 1.0124e-012 2.6511e-013

best 3.0000 3.0000 3.0000 3.0000 3.0000
median 3.0000 3.0000 3.0000 3.0000 3.0000

f10 mean 3.0000 3.0000 3.0000 3.0000 3.0000

worst 3.0000 3.0000 3.0000 3.0000 3.0000
st.dev. 2.5135e-015 1.5317e-015 1.2669e-015 2.5697e-010 1.2191e-010
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Figure 3. Average fitness of the two-dimensional functions from
f1 to f10
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Table 5. Comparisons among various algorithms on test functions(10D)

Fcn Statistic RCGA CLPSO SaDE STAI STAII

best 4.0118e-012 1.5229e-012 1.0686e-053 0 0
median 4.1019e-011 5.3464e-011 1.6873e-051 0 0

f1 mean 8.4302e-011 6.0282e-011 3.5549e-051 0 0
worst 5.6332e-010 1.6279e-010 2.7214e-050 0 0

st.dev. 1.1766e-010 4.9198e-011 6.1159e-051 0 0

best 1.0814e-011 1.9806e-006 0 0 0

median 2.9849 1.0401e-005 0 0 0

f2 mean 2.6864 2.7769e-005 0.0332 0 0
worst 5.9697 2.5009e-004 0.9950 0 0

st.dev. 1.5491 4.7363e-005 0.1817 0 0

best 3.2914e-010 2.6061e-005 0 0 0

median 0.0492 0.0019 0 0 0
f3 mean 0.0582 0.0038 5.7529e-004 0.0166 0

worst 0.1699 0.0166 0.0099 0.0738 0
st.dev. 0.0439 0.0045 0.0022 0.0260 0

best 0.0662 0.6841 8.3515e-012 2.6607e-005 7.3949e-005
median 7.2483 4.0404 3.4637e-004 1.7823 0.2809

f4 mean 7.0110 4.3775 0.3415 2.3266 0.4095

worst 9.2754 12.3253 3.9866 21.8603 1.5228
st.dev. 1.4466 2.8042 1.0098 3.7249 0.4124

best -3.9530e+003 -4.1898e+003 -4.1898e+003 -4.1898e+003 -4.1898e+003

median -3.8345e+003 -4.1898e+003 -4.1898e+003 -4.1898e+003 -4.1898e+003

f5 mean -3.7832e+003 -4.1898e+003 -4.1898e+003 -4.1898e+003 -4.1898e+003
worst -3.3608e+003 -4.1898e+003 -4.1898e+003 -4.1898e+003 -4.1898e+003

st.dev. 151.3665 5.5006e-008 2.7751e-012 1.1734e-011 1.9256e-012

best 6.6339e-007 1.5533e-006 -8.8818e-016 -8.8818e-016 -8.8818e-016

median 2.8352e-006 4.0369e-006 2.6645e-015 -8.8818e-016 -8.8818e-016
f6 mean 3.1524e-006 4.8197e-006 2.3093e-015 2.9606e-016 -8.8818e-016

worst 9.6980e-006 1.3052e-005 2.6645e-015 2.6645e-015 -8.8818e-016

st.dev. 2.1010e-006 3.2984e-006 1.0840e-015 1.7034e-015 0

best -9.6154 -9.6601 -9.6602 -9.6602 -9.6602
median -9.2604 -9.6598 -9.6602 -9.6602 -9.6602

f7 mean -9.2425 -9.6588 -9.6513 -9.1797 -9.6602

worst -8.7143 -9.6549 -9.6135 -7.6602 -9.6602
st.dev. 0.2265 0.0018 0.0173 0.6044 1.9138e-009

ten dimensional problem, only SaDE and STAs can find the best with a low proba-
bility. In this case, SaDE achieves best results, followed by STAII. From subfigure
(D) of Figure 3 and Figure 4, we can find that STAs still converge faster than other
algorithm but with not higher solution precision than SaDE. Compared with STAI,
STAII have much better statistical performances, which are indicated by the worst
and the mean.

Schewefel Function: as for the function, only RCGA can not find the global
optimum for both two and ten dimensions; furthermore, the median and st.dev.
also show that the RCGA is not stable and reliable for this function. Other algo-
rithms achieve the best as well as good reliability and stability because the st.dev
approaches zero for these methods. From subfigure (E) of Figure 3 and Figure 4,
the faster convergence speed belongs to the STAs as well. While for STAs, it shows
that STAII converge faster than STAI for the function.

Ackley Function: it seems that all of the algorithms have no problem in finding
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Figure 4. Average fitness of the ten-dimensional functions from f1 to f7

the global optimum for the function in terms of two and ten dimensions. The sta-
tistical performances of results are satisfactory for all methods because the st.dev.
approaches zero. In subfigure (F) of Figure 3 and Figure 4, we can find that STAs
also have faster convergence speed than other algorithms and the solution precision
is also higher for STAs when compared with others.

Michalewicz Function: all of the algorithms can achieve the global optimum
for this function in two dimension, and the statistical performances is satisfactory
in this case. While for the function with ten dimension, only STAII are able to
achieve the same statistics as the results in two dimensional function. More specif-
ically, RCGA and CLPSO are not able to find the best. The worst of STAI show
that it is not reliable sometimes.
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Schaffer Function: the global optimum can be found by all the algorithms;
however, only STAs can achieve reliable and stable performance for this function,
as indicated by the mean and the st.dev.. Other methods fail to find the best oc-
casionally, which is described by the worst, that is to say, other algorithm are not
reliable for the function. In the case, STAII converge much faster than STAI, as
illustrated by subfigure (H).

Easom Function: all of the algorithms are able to find the global optimum
with a high probability. The st.dev. indicates that the statistical performance are
also fine for all methods. The subfigure (I) of Figure 3 shows that STAs have better
convergence performance again.

Goldstein-Price Function: as described in Table 4, global optimum can be
found by all algorithms, the results of which are satisfactory because the st.dev.
approaches zero. The subfigure (J) of Figure 3 shows that the convergence speed is
fine for all methods but the STAs are much better to some extent.

Over all, some explanations can be given on the behavior of average fitness curves.
As shown in Figure 3 and Figure 4, the curves of STAs change steadily during the
iteration process in most cases, There are two reasons that account for the phenom-
enon. Firstly, the rotation guarantees the steady decrease of the curves because the
rotation factor changes from a maximum value to a minimum value in a periodical
way, which prevents current best state from changing sharply. If other transforma-
tions do not work, then rotation will help searching in depth with a high precision.
Secondly, expansion and translation are beneficial for searching in a new area, while
the axesion is proposed to strength the single dimensional search, which are all ad-
vantageous for the decrease of the curves.

But every once in a while, especially described by the average fitness of f4 and f7
in ten dimension, STAs fail to find the global optimum. As declared in Part 2.2, rota-
tion transformation is used for local search, expansion, translation, and axesion are
helpful for global search. In current STAs, their control parameters(transformation
factors) are determined by experimental experience for simplicity. The failure of
STAs for f4 and f7 occasionally indicate that the global search transformations
need to be deeply studied. Anyway, the smaller rotation factor will facilitate the
exploitation and the bigger expansion, translation and axesion factors will benefit
the exploration, though how to balance them are still pending. Regarding the in-
fluence of the CF, we can find that STAII has stronger search ability than STAI
as the introducing of intermittent exchange. As illustrated by the average fitness
curves, the fitness by STAII can still decrease even if that of STAI is already steady,
that is to say, the communication strategy can help share information and prevent
premature convergence. If the CF is larger, more information will be shared, and
if the CF is small, self development will be enhanced.

By the way, the searching time required for STAs is infinity in theory, which
is the consequence of random search methodology. However, in practice, we can
stop the iteration process by presetting some criteria, for example, the prescribed
maximum iterations, or when the fitness is unchanged for a number of times. In
this paper, the maximum iterations is used.

5. Conclusion. Based on state and state transition, the STA, not only has a simple
form but also possess clear geometric significance, which is easy for understanding.
Concerning the continuous function optimization problems, it presents the state
transformations including rotation transformation, translation transformation and
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expansion transformation as well as axesion transformation. The paper focuses on
the unconstrained optimization problems, and it studies mainly on the approaches
of transformations. Furthermore, to enhance its performance in high dimensional
functions optimization, communication strategy has been introduced, and the in-
termittent exchange is proposed to strength the search ability as well as prevent
premature convergence. Using 10 benchmark functions for testing, compared with
some distinguished optimization algorithms, it shows that STAs have fine perfor-
mance in terms of global search ability and convergence accuracy, which confirms
the effectiveness of the proposed algorithms.

On the other hand, distinguished from other population-based algorithms, STA
is not originated from simulating natural intelligence, but it takes advantages of
the space structure of a function, which opens a new window for optimization. In
the paper, control parameters of STAs are not studied deeply, and they are only
determined by the experimental experience or for simplicity. In our future work,
these problems will be focused on to better develop the state transition algorithms.
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