
   

  

   

   
 

   

   

 

   

   330 Int. J. Mathematical Modelling and Numerical Optimisation, Vol. 1, No. 4, 2010    
 

   Copyright © 2010 Inderscience Enterprises Ltd. 
 
 

   

   
 

   

   

 

   

       
 

Engineering optimisation by cuckoo search 

Xin-She Yang* 
Department of Engineering, 
University of Cambridge, 
Trumpington Street, 
Cambridge CB2 1PZ, UK 
E-mail: xy227@cam.ac.uk 
*Corresponding author 

Suash Deb 
Department of Computer Science & Engineering, 
C. V. Raman College of Engineering, 
Bidyanagar, Mahura, Janla, 
Bhubaneswar 752054, India 
E-mail: suashdeb@gmail.com 

Abstract: A new metaheuristic optimisation algorithm, called cuckoo search 
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designed stochastic test functions. We then apply the CS algorithm to solve 
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1 Introduction 

Most design optimisation problems in engineering are often highly non-linear, involving 
many different design variables under complex constraints. These constraints can be 
written either as simple bounds such as the ranges of material properties, or as non-linear 
relationships including maximum stress, maximum deflection, minimum load capacity, 
and geometrical configuration. Such non-linearity often results in multimodal response 
landscape. Subsequently, local search algorithms such as hill-climbing and Nelder-Mead 
downhill simplex methods are not suitable, only global algorithms should be used so as to 
obtain optimal solutions (Deb, 1995, Arora, 1989, Passino, 2001; Yang, 2005, 2008). 

Modern metaheuristic algorithms have been developed with an aim to carry out 
global search, typical examples are genetic algorithms (GA) (Goldberg, 1989), particle 
swarm optimisation (PSO) (Kennedy and Eberhart, 1995; Kennedy et al., 2001). The 
efficiency of metaheuristic algorithms can be attributed to the fact that they imitate the 
best features in nature, especially the selection of the fittest in biological systems which 
have evolved by natural selection over millions of years. Two important characteristics of 
metaheuristics are: intensification and diversification (Blum and Roli, 2003, Gazi and 
Passino, 2004; Yang, 2009). Intensification intends to search around the current best 
solutions and select the best candidates or solutions, while diversification makes sure that 
the algorithm can explore the search space more efficiently, often by randomisation. 

Recently, a new metaheuristic search algorithm, called cuckoo search (CS), has been 
developed by Yang and Deb (2009). Preliminary studies show that it is very promising 
and could outperform existing algorithms such as PSO. In this paper, we will further 
study CS and validate it against test functions including stochastic test functions. Then, 
we will apply it to solve design optimisation problems in engineering. Finally, we will 
discuss the unique features of CS and propose topics for further studies. 

2 Cuckoo search 

In order to describe the CS more clearly, let us briefly review the interesting breed 
behaviour of certain cuckoo species. Then, we will outline the basic ideas and steps of the 
proposed algorithm. 

2.1 Cuckoo breeding behaviour 

Cuckoos are fascinating birds, not only because of the beautiful sounds they can make, 
but also because of their aggressive reproduction strategy. Some species such as the ani 
and guira cuckoos lay their eggs in communal nests, though they may remove others’ 
eggs to increase the hatching probability of their own eggs (Payne et al., 2005). Quite a 
number of species engage the obligate brood parasitism by laying their eggs in the nests 
of other host birds (often other species). There are three basic types of brood parasitism: 
intraspecific brood parasitism, cooperative breeding and nest takeover. Some host birds 
can engage direct conflict with the intruding cuckoos. If a host bird discovers the eggs are 
not its own, it will either throw these alien eggs away or simply abandons its nest and 
builds a new nest elsewhere. Some cuckoo species such as the new world  
 
 



   

 

   

   
 

   

   

 

   

   332 X-S. Yang and S. Deb    
 

    
 
 

   

   
 

   

   

 

   

       
 

brood-parasitic Tapera have evolved in such a way that female parasitic cuckoos are 
often very specialised in the mimicry in colour and pattern of the eggs of a few chosen 
host species (Payne et al., 2005). This reduces the probability of their eggs being 
abandoned and thus increases their reproductivity. 

Furthermore, the timing of egg-laying of some species is also amazing. Parasitic 
cuckoos often choose a nest where the host bird just laid its own eggs. In general, the 
cuckoo eggs hatch slightly earlier than their host eggs. Once the first cuckoo chick is 
hatched, the first instinct action it will take is to evict the host eggs by blindly propelling 
the eggs out of the nest, which increases the cuckoo chick’s share of food provided by its 
host bird (Payne et al., 2005). Studies also show that a cuckoo chick can also mimic the 
call of host chicks to gain access to more feeding opportunity. 

2.2 Lévy flights 

In nature, animals search for food in a random or quasi-random manner. In general, the 
foraging path of an animal is effectively a random walk because the next move is based 
on the current location/state and the transition probability to the next location. Which 
direction it chooses depends implicitly on a probability which can be modelled 
mathematically. For example, various studies have shown that the flight behaviour of 
many animals and insects has demonstrated the typical characteristics of Lévy flights 
(Brown et al., 2007; Reynolds and Frye, 2007; Pavlyukevich, 2007). 

A recent study by Reynolds and Frye (2007) shows that fruit flies or Drosophila 
melanogaster, explore their landscape using a series of straight flight paths punctuated by 
a sudden 90o turn, leading to a Lévy-flight-style intermittent scale-free search pattern. 
Studies on human behaviour such as the Ju/’hoansi hunter-gatherer foraging patterns also 
show the typical feature of Lévy flights. Even light can be related to Lévy flights 
(Barthelemy et al., 2008). Subsequently, such behaviour has been applied to optimisation 
and optimal search, and preliminary results show its promising capability (Shlesinger, 
2006, Pavlyukevich, 2007). 

2.3 Cuckoo search 

For simplicity in describing our new CS (Yang and Deb 2009), we now use the following 
three idealised rules: 

• Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest. 

• The best nests with high quality of eggs (solutions) will carry over to the next 
generations. 

• The number of available host nests is fixed, and a host can discover an alien egg with 
a probability [0,1].∈ap  In this case, the host bird can either throw the egg away or 
abandon the nest so as to build a completely new nest in a new location. 

For simplicity, this last assumption can be approximated by a fraction pa of the n nests 
being replaced by new nests (with new random solutions at new locations). For a 
maximisation problem, the quality or fitness of a solution can simply be proportional to 
the objective function. Other forms of fitness can be defined in a similar way to the 
fitness function in GA. 
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Figure 1 Cuckoo search (CS) 

Objective function 1( ),  ( , , ) ;= … T
df x xx x  

Initial a population of n host nests ( 1,2, , );= …i i nx  

while (t  < MaxGeneration) or (stop criterion); 

 Get a cuckoo (say )i  randomly by Lévy flights; 

 Evaluate its quality/fitness ;iF  

 Choose a nest among n (say )j  randomly; 

 if ( ),>i jF F  

  Replace j  by the new solution; 

 end 

 Abandon a fraction ( )ap  of worse nests 

  [and build new ones at new locations via Lévy flights]; 

 Keep the best solutions (or nests with quality solutions); 

 Rank the solutions and find the current best; 

end while 

Post process results and visualisation; 

Based on these three rules, the basic steps of the CS can be summarised as the pseudo 
code shown in Figure 1. 

When generating new solutions ( 1)+tx  for, say cuckoo ,i  a Lévy flight is performed 

( 1) ( ) Lévy( ),+ = +t t
i i α λ⊕x x  (1) 

where 0>α  is the step size which should be related to the scales of the problem of 
interest. In most cases, we can use (1).O=α  The product ⊕  means entry-wise 
multiplications. Lévy flights essentially provide a random walk while their random steps 
are drawn from a Lévy distribution for large steps 

Lévy ,(1 3),−= < ≤u t∼ λ λ  (2) 

which has an infinite variance with an infinite mean. Here the consecutive jumps/steps of 
a cuckoo essentially form a random walk process which obeys a power-law step-length 
distribution with a heavy tail. 

3 Implementation and validation 

3.1 Validation and parameter studies 

It is relatively easy to implement the algorithm, and then we have to benchmark it using 
test functions with analytical or known solutions. There are many benchmark test 
functions and there is no standard list or collection, though extensive descriptions of 
various functions do exist in literature (Floudas et al., 1999; Hedar, 2005; Molga and 
Smutnicki, 2005). For example, Michalewicz’s test function has many local optima 
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1

( ) sin( ) sin , ( 10),
=
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∑
md

i
i

i

ix
f x m

π
x  (3) 

in the domain 0 ≤ ≤ix π  for 1, 2, ,= …i d  where d  is the number of dimensions. The 
global minimum 1.801∗ ≈ −f  occurs at (2.20319, 1.57049) for 2,=d  while 

4.6877∗ ≈ −f  for 5.=d  In the 2D case, its 3D landscape is shown Figure 2. 

Figure 2 The landscape of Michaelwicz’s 2D function 
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The global optimum in 2D can easily be found using CS, and the results are shown in 
Figure 3 where the final locations of the nests are marked with  ♦. Here we have used 

20=n  nests, 1=α  and 0.25.=ap  From the figure, we can see that, as the optimum is 
approaching, most nests aggregate towards the global optimum. In various simulations, 
we also notice that nests are also distributed at different (local) optima in the case of 
multimodal functions. This means that CS can find all the optima simultaneously if the 
numbers of nests are much higher than the number of local optima. This advantage may 
become more significant when dealing with multimodal and multi-objective optimisation 
problems. 

We have also tried to vary the number of host nests (or the population size )n  and the 
probability .ap  We have used n  = 5, 10, 15, 20, 50, 100, 150, 250, 500 and ap  = 0, 
0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.4, 0.5. From our simulations, we found that 

15 to 25=n  and 0.15 to 0.30=ap  are sufficient for most optimisation problems. 
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Results and analysis also imply that the convergence rate, to some extent, is not sensitive 
to the parameters used. This means that the fine adjustment of algorithm-dependent 
parameters is not needed for any given problems. Therefore, we will use 20=n  and 

0.25=ap  in the rest of the simulations, especially for the comparison studies presented 
later. 

Figure 3 Initial locations of 20 nests in CS, and their final locations are marked with ♦ 
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3.2 Standard test functions 

Various test functions in literature are designed to test the performance of optimisation 
algorithms (Chattopadhyay, 1971; Schoen, 1993; Shang and Qiu, 2006). Any new 
optimisation algorithm should also be validated and tested against these benchmark 
functions. In our simulations, we have used the following test functions. 

De Jong’s first function is essentially a sphere function 

2

1

( ) , [ 5.12,5.12],
=

= − ∈ −∑
d

i i
i

f x xx  (4) 

whose global minimum ( ) 0∗ =f x  occurs at (0,0, ,0).∗ = …x  Here d  is the dimension. 
The generalised Rosenbrock’s function is given by 

( ) ( )
1 22 2

1
1

( ) 1 100 ,
−

+
=

⎡ ⎤= − − + −⎣ ⎦∑
d

i i i
i

f x x xx  (5) 

which has a unique global minimum 0∗ =f  at (1,1, ,1).∗ = …x  
Schwefel’s test function is multimodal 

( )
1

( ) sin , 500 500,
=

⎡ ⎤= − − − ≤ ≤⎣ ⎦∑
d

i i i
i

f x x xx  (6) 

whose global minimum 418.9859∗ = −f d  is at 420.9687( 1,2, , ).∗ = = …ix i d  
Ackley’s function is also multimodal 
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1 1

1 1( ) 20exp 0.2 exp cos(2 ) (20 ),
= =

⎡ ⎤ ⎡ ⎤
⎢ ⎥= − − − + +⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

∑ ∑
d d

i i
i i

f x x e
d d

πx  (7) 

with the global minimum 0∗ =f  at (0,0, ,0).∗ = …x  in the range of 
–32.768 32.768≤ ≤ix  where 1, 2, , .= …i d  

Rastrigin’s test function 

2

1

( ) 10 10cos(2 ) ,
=

⎡ ⎤= + −⎣ ⎦∑
d

i i
i

f d x xπx  (8) 

has a unique global minimum 0∗ =f  at (0, 0, …, 0) in a hypercube –5.12 5.12≤ ≤ix  
where 1,2, , .= …i d  

Easom’s test function has a sharp tip 

2 2( , ) cos( )cos( ) exp ( ) ( ) ,⎡ ⎤= − − − − −⎣ ⎦f x y x y x yπ π  (9) 

in the domain ( , ) [ 100,100] [ 100,100].∈ − × −x y  It has a global minimum of 1∗ = −f  at 
( , )π π  in a very small region. 

2

1 1

1( ) cos 1,
4000 = =

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
∑ ∏

dd
i

i
i i

x
f x x

i
 (10) 

but a unique global minimum 0∗ =f  at (0, 0, …, 0) for all –600 600≤ ≤ix  where 
1, 2, , .= …i d  

3.3 Stochastic test functions 

Almost all the test functions in literature are deterministic. It is usually more difficult for 
algorithms to deal with stochastic functions. We have designed some stochastic test 
functions for such a purpose. 

The first test function designed by Yang (2010) looks like a standing-wave function 
with a region of defects 

( ) ( )2 2
1 1 2

1

( ) 2 cos , 5,= =
− − −

=

⎡ ⎤
= ⎣ − ⎦ ⋅ =∑ ∑ ∏

d dm
i i ii i

d
x x

i
i

f e e x m
β πε

x  (11) 

which has many local minima and the unique global minimum 1∗ = −f  at 
( , , , )∗ = …π π πx  for 15=β  within the domain –20 20≤ ≤ix  for 1, 2, , .= …i d  Here the 

random variables ( 1,2, , )= …i i dε  are uniformly distributed in (0, 1). For example, if all 
iε  are relatively small (say order of 0.05), a snapshot of the landscape in 2D is shown in 

Figure 4, while for higher values such as 0.5 the landscape is different, also shown in 
Figure 4. 
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Figure 4 Landscape of stochastic function (11) for small ε  (left) and large ε  (right) 

−10

0

10 −10

0

10
−1

−0.5

0

0.5

1

−5

0

5 −5
0

5

−1

−0.5

0

0.5

1

 

Yang’s second test function is also multimodal but it has a singularity 

( )2

1 1

( ) exp sin ,
= =

⎛ ⎞ ⎡ ⎤
= −⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

∑ ∑
d d

i i i
i i

f x xεx  (12) 

which has a unique global minimum 0∗ =f  at (0,0, ,0)∗ = …x  in the domain 
–2 2≤ ≤ixπ π  where 1, 2, ,= …i d  (Yang, 2010). This function is singular at the 
optimum (0, …, 0). Similarly, iε  should be drawn from a uniform distribution in [0, 1] or 
Unif[0, 1]. In fact, using the same methodology, we can turn many determistic functions 
into stochastic test functions. For example, we can extend Robsenbrock’s function as the 
following stochastic function 

( ) ( )
1 22 2

1
1

( ) 1 100
−

+
=

⎡ ⎤= − − + −⎣ ⎦∑
d

i i i i
i

f x x xεx  (13) 

where iε  should be drawn from Unif[0, 1]. Similarly, we can also extend De Jong’s 
function into its corresponding stochastic form 

2

1

( ) ,
=

= −∑
d

i i
i

f xεx  (14) 

which still has the same global minimum 0∗ =f  at (0, 0, …, 0), despite its stochastic 
nature due to the factor .iε . For stochastic functions, most deterministic algorithms such 
as hill climbing and Nelder-Mead downhill simplex method would simply fail. However, 
we can see later that most metaheuristic algorithms such as PSO and CS are still robust. 

3.4 Simulations and comparison 

Recent studies indicate that PSO can outperform GA and other conventional algorithms 
(Goldberg, 1989; Kennedy et al., 2001; Yang 2008). 
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Figure 5 The initial location of 20 nests (left) for function (11) and their final locations after  
15 iterations (right) 
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This can be attributed partly to the broadcasting ability of the current best estimates, 
potentially leading to a better and quicker convergence rate towards the optimality. A 
general framework for evaluating statistical performance of evolutionary algorithms has 
been discussed in detail by Shilane et al. (2008). 

Now we can compare the CS with PSO and GA for various test functions. After 
implementing these algorithms using Matlab, we have carried out extensive simulations 
and each algorithm has been run at least 100 times so as to carry out meaningful 
statistical analysis. The algorithms stop when the variations of function values are less 
than a given tolerance 1510 .−≤ε  The results are summarised in Table 1 where the 
numbers are in the format: average number of evaluations ± one standard deviation 
(success rate), so 3321 ± 519 (100%) means that the average number (mean) of function 
evaluations is 3321 with a standard deviation of 519. The success rate of finding the 
global optima for this algorithm is 100%. The functions used in the Table are 

1 Michaelwicz ( 16)=d . 

2 Rosenrbrock ( 16)=d . 

3 De Jong ( 32)=d . 

4 Schwefel ( 32)=d . 

5 Ackley ( 128)=d . 

6 Rastrigin. 

7 Easom. 

8 Griewank. 

9 Yang’s first stochastic function. 

10 Yang’s second stochastic function. 
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11 Generalised Robsenbrock’s function with stochastic components. 

12 De Jong’s stochastic function. The value of d = 16 is used for all other cases, if not 
stated. 

We can see that CS is much more efficient in finding the global optima with higher 
success rates. Each function evaluation is virtually instantaneous on a modern personal 
computer. For example, the computing time for 10,000 evaluations on a 3 GHz desktop is 
about five seconds. In addition, for stochastic functions, GAs do not perform well, while 
PSO is better. However, CS is far more promising. 

4 Engineering design 

Design optimisation is an integrated part of designing any new products in engineering 
and industry. Most design problems are complex and multi-objective, sometimes even the 
optimal solutions of interest do not exist. In order to see how the CS algorithm may 
perform, we now use two standard but well-known test problems. 

Table 1 Comparison of CS with GAs and particle swarm optimisation 

Functions  GA PSO CS 

1 89325 ± 7914(95%) 6922 ± 537(98%) 3221 ± 519(100%) 

2 55723 ± 8901(90%) 32756 ± 5325(98%) 5923 ± 1937(100%) 

3 15232 ± 1270(100%) 10079 ± 970(100%) 3015 ± 540(100%) 

4 23790 ± 6523(95%) 92411 ± 1163(97%) 4710 ± 592(100%) 

5 32720 ± 3327(90%) 23407 ± 4325(92%) 4936 ± 903(100%) 

6 110523 ± 5199(77%) 79491 ± 3715(90%) 10354 ± 3755(100%) 

7 19239 ± 3307(92%) 17273 ± 2929(90%) 6751 ± 1902(100%) 

8 70925 ± 7652(90%) 55970 ± 4223(92%) 10912 ± 4050(100%) 

9 79025 ± 6312(49%) 34056 ± 4470(90%) 11254 ± 2733(99%) 

10 35072 ± 3730(54%) 22360 ± 2649(92%) 8669 ± 3480(98%) 

11 63268 ± 5091(40%) 49152 ± 6505(89%) 10564 ± 4297(99%) 

12 24164 ± 4923(68%) 11780 ± 4912(94%) 7723 ± 2504(100%) 

4.1 Spring design optimisation 

Tensional and/or compressional springs are used widely in engineering (Arora, 1989; 
Belegundu, 1982). A standard spring design problem has three design variables: the wire 
diameter ,w  the mean coil diameter ,d  and the length (or number of coils) .L  

2Minimise ( ) ( 2) ,= +f L w dx  (15) 
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4 3 2

( ) 1 0,
7178
140.45( ) 1 0,

2( )( ) 1 0,
3
(4 ) 1( ) 1 0,

(12566 ) 5108

= − ≤

= − ≤
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= + − ≤

−
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w

g
d L
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d d w
g

w d w w

x

x

x

x

 (16) 

with the following limits 

0.05 2.0, 0.25 1.3, 2.0 15.0.≤ ≤ ≤ ≤ ≤ ≤w d L  (17) 

Using CS, we have obtained the following optimal solution 

(0.0500000,0.2500000,9.9876768),∗ =x  (18) 

with 

min 0.007492298,=f  (19) 

which is better or lower than the best solution obtained by Cagnina et al. (2008) 

0.012665 at (0.051690, 0.356750, 11.287126).∗ =f  (20) 

4.2 Welded beam design 

The so-called welded beam design is another standard test problem for constrained design 
optimisation (Ragsdell and Phillips, 1976; Cagnina et al., 2008). The problem has four 
design variables: the width w  and length L  of the welded area, the depth h  and 
thickness h  of the main beam. The objective is to minimise the overall fabrication cost, 
under the appropriate constraints of shear stress ,τ  bending stress ,σ  buckling load P  
and maximum end deflection. 

The problem can be written as 
2Minimise ( ) 1.10471 0.04811 (14.0 ),= + +f w L dh Lx  (21) 

subject to 

1

2

3

4
2

5

6

7

( ) 0,
( ) ( ) 0.25 0,
( ) ( ) 13,600 0,
( ) ( ) 30,000 0,

( ) 0.10471 0.04811 (14 ) 5.0 0,
( ) 0.125 0,
( ) 6000 ( ) 0,

= − ≤
= − ≤
= − ≤

= − ≤

= + + − ≤

= − ≤

= − ≤

g w h

g

g

g

g w hd L

g w

g P

x

x x

x x

x x

x

x

x x

δ
τ

σ  (22) 
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504,000( ) , 6000 14 ,
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30,000

6000 , ( )
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L
Q

hd
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Q
Jhd

L
DwL

ddh
P

x

x

 (23) 

The simple limits or bounds are 0.1 , 10≤ ≤L d  and 0.1 , 2.0.≤ ≤w h  
Using our CS, we have the following optimal solution 

( , , , ) (0.1701244,10.0000000,3.1821349,0.2725074),∗ = =w L d hx  (24) 

with 

min( ) 1.32098089.∗ =f x  (25) 

This solution is better than the solution obtained by Cagnina et al. (2008) 

1.724852 at (0.205730,3.470489,9.036624,0.205729).∗ =f  (26) 

We have seen that, for both test problems, CS has found the optimal solutions which are 
better than any solutions found so far in literature. 

5 Discussions and conclusions 

From the comparison study of the performance of CS with GAs and PSO, we know that 
our new CS in combination with Lévy flights is very efficient and proves to be superior 
for almost all the test problems. This is partly due to the fact that there are fewer 
parameters to be fine-tuned in CS than in PSO and GAs. In fact, apart from the 
population size n, there is essentially one parameter pa. If we look at the CS algorithm 
carefully, there are essentially three components: selection of the best, exploitation by 
local random walk and exploration by randomisation via Lévy flights globally. 

The selection of the best by keeping the best nests or solutions is equivalent to some 
form of elitism commonly used in GAs, which ensures the best solution is passed onto 
the next iteration and there is no risk that the best solutions are cast out of the population. 
The exploitation around the best solutions is performed by using a local random walk 

1 .+ = +t t
tαεx x  (27) 

If tε  obeys a Gaussian distribution, this becomes a standard random walk indeed. This is 
equivalent to the crucial step in pitch adjustment in harmony search (Geem et al., 2001; 
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Yang, 2009). If tε  is drawn from a Lévy distribution, the step of move is larger and 
could be potentially more efficient. However, if the step is too large, there is risk that the 
move is too far away. Fortunately, the elitism by keeping the best solutions makes sure 
that the exploitation moves are within the neighbourhood of the best solutions locally. 

On the other hand, in order to sample the search space effectively so that new 
solutions to be generated are diverse enough, the exploration step is carried out in terms 
of Lévy flights. In contrast, most metaheuristic algorithms use either uniform 
distributions or Gaussian to generate new explorative moves (Geem et al., 2001, Blum 
and Roli, 2003). If the search space is large, Lévy flights are usually more efficient. A 
good combination of the above three components can thus lead to an efficient algorithm 
such as CS. 

Furthermore, our simulations also indicate that the convergence rate is insensitive to 
the algorithm-dependent parameters such as pa. This also means that we do not have to 
fine tune these parameters for a specific problem. Subsequently, CS is more generic and 
robust for many optimisation problems, comparing with other metaheuristic algorithms. 

This potentially powerful optimisation strategy can easily be extended to study  
multi-objecitve optimisation applications with various constraints, including NP-hard 
problems. Further studies can focus on the sensitivity and parameter studies and their 
possible relationships with the convergence rate of the algorithm. In addition, 
hybridisation with other popular algorithms such as PSO will also be potentially fruitful. 
More importantly, as for most metaheuristic algorithms, mathematical analysis of the 
algorithm structures is highly needed. At the moment, no such framework exists for 
analyzing metaheuristics in general. Any progress in this area will potentially provide 
new insight into the understanding of how and why metaheuristic algorithms work. 
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