

 330 Int. J. Mathematical Modelling and Numerical Optimisation, Vol. 1, No. 4, 2010

 Copyright © 2010 Inderscience Enterprises Ltd.

Engineering optimisation by cuckoo search

Xin-She Yang*
Department of Engineering,
University of Cambridge,
Trumpington Street,
Cambridge CB2 1PZ, UK
E-mail: xy227@cam.ac.uk
*Corresponding author

Suash Deb
Department of Computer Science & Engineering,
C. V. Raman College of Engineering,
Bidyanagar, Mahura, Janla,
Bhubaneswar 752054, India
E-mail: suashdeb@gmail.com

Abstract: A new metaheuristic optimisation algorithm, called cuckoo search
(CS), was developed recently by Yang and Deb (2009). This paper presents a
more extensive comparison study using some standard test functions and newly
designed stochastic test functions. We then apply the CS algorithm to solve
engineering design optimisation problems, including the design of springs and
welded beam structures. The optimal solutions obtained by CS are far better
than the best solutions obtained by an efficient particle swarm optimiser. We
will discuss the unique search features used in CS and the implications for
further research.

Keywords: algorithm; cuckoo search; engineering optimisation; metaheuristic;
particle swarm optimisation.

Reference to this paper should be made as follows: Yang, X-S. and Deb, S.
(2010) ‘Engineering optimisation by cuckoo search’, Int. J. Mathematical
Modelling and Numerical Optimisation, Vol. 1, No. 4, pp.330–343.

Biographical notes: Xin-She Yang received his DPhil in Applied Mathematics
from Oxford University, and he has been the recipient of the Garside Senior
Scholar Award, Oxford University. He has been at Cambridge University, and
published five books and more than 70 papers.

Suash Deb is a Professor of Computer Sciences and Engineering at C.V.
Raman College of Engineering. As a Senior Member of the IEEE, he has been
the recipient of Bharat Excellent Award and International Albert Einstein
Award for Scientific Excellence. He is the Editor-in-Chief of International
Journal of Soft Computing & Bioinformatics, and serves as an editor or advisor
for several international journals.

 Engineering optimisation by cuckoo search 331

1 Introduction

Most design optimisation problems in engineering are often highly non-linear, involving
many different design variables under complex constraints. These constraints can be
written either as simple bounds such as the ranges of material properties, or as non-linear
relationships including maximum stress, maximum deflection, minimum load capacity,
and geometrical configuration. Such non-linearity often results in multimodal response
landscape. Subsequently, local search algorithms such as hill-climbing and Nelder-Mead
downhill simplex methods are not suitable, only global algorithms should be used so as to
obtain optimal solutions (Deb, 1995, Arora, 1989, Passino, 2001; Yang, 2005, 2008).

Modern metaheuristic algorithms have been developed with an aim to carry out
global search, typical examples are genetic algorithms (GA) (Goldberg, 1989), particle
swarm optimisation (PSO) (Kennedy and Eberhart, 1995; Kennedy et al., 2001). The
efficiency of metaheuristic algorithms can be attributed to the fact that they imitate the
best features in nature, especially the selection of the fittest in biological systems which
have evolved by natural selection over millions of years. Two important characteristics of
metaheuristics are: intensification and diversification (Blum and Roli, 2003, Gazi and
Passino, 2004; Yang, 2009). Intensification intends to search around the current best
solutions and select the best candidates or solutions, while diversification makes sure that
the algorithm can explore the search space more efficiently, often by randomisation.

Recently, a new metaheuristic search algorithm, called cuckoo search (CS), has been
developed by Yang and Deb (2009). Preliminary studies show that it is very promising
and could outperform existing algorithms such as PSO. In this paper, we will further
study CS and validate it against test functions including stochastic test functions. Then,
we will apply it to solve design optimisation problems in engineering. Finally, we will
discuss the unique features of CS and propose topics for further studies.

2 Cuckoo search

In order to describe the CS more clearly, let us briefly review the interesting breed
behaviour of certain cuckoo species. Then, we will outline the basic ideas and steps of the
proposed algorithm.

2.1 Cuckoo breeding behaviour

Cuckoos are fascinating birds, not only because of the beautiful sounds they can make,
but also because of their aggressive reproduction strategy. Some species such as the ani
and guira cuckoos lay their eggs in communal nests, though they may remove others’
eggs to increase the hatching probability of their own eggs (Payne et al., 2005). Quite a
number of species engage the obligate brood parasitism by laying their eggs in the nests
of other host birds (often other species). There are three basic types of brood parasitism:
intraspecific brood parasitism, cooperative breeding and nest takeover. Some host birds
can engage direct conflict with the intruding cuckoos. If a host bird discovers the eggs are
not its own, it will either throw these alien eggs away or simply abandons its nest and
builds a new nest elsewhere. Some cuckoo species such as the new world

 332 X-S. Yang and S. Deb

brood-parasitic Tapera have evolved in such a way that female parasitic cuckoos are
often very specialised in the mimicry in colour and pattern of the eggs of a few chosen
host species (Payne et al., 2005). This reduces the probability of their eggs being
abandoned and thus increases their reproductivity.

Furthermore, the timing of egg-laying of some species is also amazing. Parasitic
cuckoos often choose a nest where the host bird just laid its own eggs. In general, the
cuckoo eggs hatch slightly earlier than their host eggs. Once the first cuckoo chick is
hatched, the first instinct action it will take is to evict the host eggs by blindly propelling
the eggs out of the nest, which increases the cuckoo chick’s share of food provided by its
host bird (Payne et al., 2005). Studies also show that a cuckoo chick can also mimic the
call of host chicks to gain access to more feeding opportunity.

2.2 Lévy flights

In nature, animals search for food in a random or quasi-random manner. In general, the
foraging path of an animal is effectively a random walk because the next move is based
on the current location/state and the transition probability to the next location. Which
direction it chooses depends implicitly on a probability which can be modelled
mathematically. For example, various studies have shown that the flight behaviour of
many animals and insects has demonstrated the typical characteristics of Lévy flights
(Brown et al., 2007; Reynolds and Frye, 2007; Pavlyukevich, 2007).

A recent study by Reynolds and Frye (2007) shows that fruit flies or Drosophila
melanogaster, explore their landscape using a series of straight flight paths punctuated by
a sudden 90o turn, leading to a Lévy-flight-style intermittent scale-free search pattern.
Studies on human behaviour such as the Ju/’hoansi hunter-gatherer foraging patterns also
show the typical feature of Lévy flights. Even light can be related to Lévy flights
(Barthelemy et al., 2008). Subsequently, such behaviour has been applied to optimisation
and optimal search, and preliminary results show its promising capability (Shlesinger,
2006, Pavlyukevich, 2007).

2.3 Cuckoo search

For simplicity in describing our new CS (Yang and Deb 2009), we now use the following
three idealised rules:

• Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest.

• The best nests with high quality of eggs (solutions) will carry over to the next
generations.

• The number of available host nests is fixed, and a host can discover an alien egg with
a probability [0,1].∈ap In this case, the host bird can either throw the egg away or
abandon the nest so as to build a completely new nest in a new location.

For simplicity, this last assumption can be approximated by a fraction pa of the n nests
being replaced by new nests (with new random solutions at new locations). For a
maximisation problem, the quality or fitness of a solution can simply be proportional to
the objective function. Other forms of fitness can be defined in a similar way to the
fitness function in GA.

 Engineering optimisation by cuckoo search 333

Figure 1 Cuckoo search (CS)

Objective function 1(), (, ,) ;= … T
df x xx x

Initial a population of n host nests (1,2, ,);= …i i nx

while (t < MaxGeneration) or (stop criterion);

 Get a cuckoo (say)i randomly by Lévy flights;

 Evaluate its quality/fitness ;iF

 Choose a nest among n (say)j randomly;

 if (),>i jF F

 Replace j by the new solution;

 end

 Abandon a fraction ()ap of worse nests

 [and build new ones at new locations via Lévy flights];

 Keep the best solutions (or nests with quality solutions);

 Rank the solutions and find the current best;

end while

Post process results and visualisation;

Based on these three rules, the basic steps of the CS can be summarised as the pseudo
code shown in Figure 1.

When generating new solutions (1)+tx for, say cuckoo ,i a Lévy flight is performed

(1) () Lévy(),+ = +t t
i i α λ⊕x x (1)

where 0>α is the step size which should be related to the scales of the problem of
interest. In most cases, we can use (1).O=α The product ⊕ means entry-wise
multiplications. Lévy flights essentially provide a random walk while their random steps
are drawn from a Lévy distribution for large steps

Lévy ,(1 3),−= < ≤u t∼ λ λ (2)

which has an infinite variance with an infinite mean. Here the consecutive jumps/steps of
a cuckoo essentially form a random walk process which obeys a power-law step-length
distribution with a heavy tail.

3 Implementation and validation

3.1 Validation and parameter studies

It is relatively easy to implement the algorithm, and then we have to benchmark it using
test functions with analytical or known solutions. There are many benchmark test
functions and there is no standard list or collection, though extensive descriptions of
various functions do exist in literature (Floudas et al., 1999; Hedar, 2005; Molga and
Smutnicki, 2005). For example, Michalewicz’s test function has many local optima

 334 X-S. Yang and S. Deb

22

1

() sin() sin , (10),
=

⎡ ⎤⎛ ⎞
= − =⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑
md

i
i

i

ix
f x m

π
x (3)

in the domain 0 ≤ ≤ix π for 1, 2, ,= …i d where d is the number of dimensions. The
global minimum 1.801∗ ≈ −f occurs at (2.20319, 1.57049) for 2,=d while

4.6877∗ ≈ −f for 5.=d In the 2D case, its 3D landscape is shown Figure 2.

Figure 2 The landscape of Michaelwicz’s 2D function

0
2

4
6 0

2
4

6

−2

−1

0

1

2

The global optimum in 2D can easily be found using CS, and the results are shown in
Figure 3 where the final locations of the nests are marked with ♦. Here we have used

20=n nests, 1=α and 0.25.=ap From the figure, we can see that, as the optimum is
approaching, most nests aggregate towards the global optimum. In various simulations,
we also notice that nests are also distributed at different (local) optima in the case of
multimodal functions. This means that CS can find all the optima simultaneously if the
numbers of nests are much higher than the number of local optima. This advantage may
become more significant when dealing with multimodal and multi-objective optimisation
problems.

We have also tried to vary the number of host nests (or the population size)n and the
probability .ap We have used n = 5, 10, 15, 20, 50, 100, 150, 250, 500 and ap = 0,
0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.4, 0.5. From our simulations, we found that

15 to 25=n and 0.15 to 0.30=ap are sufficient for most optimisation problems.

 Engineering optimisation by cuckoo search 335

Results and analysis also imply that the convergence rate, to some extent, is not sensitive
to the parameters used. This means that the fine adjustment of algorithm-dependent
parameters is not needed for any given problems. Therefore, we will use 20=n and

0.25=ap in the rest of the simulations, especially for the comparison studies presented
later.

Figure 3 Initial locations of 20 nests in CS, and their final locations are marked with ♦

0 1 2 3 4 5
0

1

2

3

4

5

0 1 2 3 4 5
0

1

2

3

4

5

3.2 Standard test functions

Various test functions in literature are designed to test the performance of optimisation
algorithms (Chattopadhyay, 1971; Schoen, 1993; Shang and Qiu, 2006). Any new
optimisation algorithm should also be validated and tested against these benchmark
functions. In our simulations, we have used the following test functions.

De Jong’s first function is essentially a sphere function

2

1

() , [5.12,5.12],
=

= − ∈ −∑
d

i i
i

f x xx (4)

whose global minimum () 0∗ =f x occurs at (0,0, ,0).∗ = …x Here d is the dimension.
The generalised Rosenbrock’s function is given by

() ()
1 22 2

1
1

() 1 100 ,
−

+
=

⎡ ⎤= − − + −⎣ ⎦∑
d

i i i
i

f x x xx (5)

which has a unique global minimum 0∗ =f at (1,1, ,1).∗ = …x
Schwefel’s test function is multimodal

()
1

() sin , 500 500,
=

⎡ ⎤= − − − ≤ ≤⎣ ⎦∑
d

i i i
i

f x x xx (6)

whose global minimum 418.9859∗ = −f d is at 420.9687(1,2, ,).∗ = = …ix i d
Ackley’s function is also multimodal

 336 X-S. Yang and S. Deb

2

1 1

1 1() 20exp 0.2 exp cos(2) (20),
= =

⎡ ⎤ ⎡ ⎤
⎢ ⎥= − − − + +⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

∑ ∑
d d

i i
i i

f x x e
d d

πx (7)

with the global minimum 0∗ =f at (0,0, ,0).∗ = …x in the range of
–32.768 32.768≤ ≤ix where 1, 2, , .= …i d

Rastrigin’s test function

2

1

() 10 10cos(2) ,
=

⎡ ⎤= + −⎣ ⎦∑
d

i i
i

f d x xπx (8)

has a unique global minimum 0∗ =f at (0, 0, …, 0) in a hypercube –5.12 5.12≤ ≤ix
where 1,2, , .= …i d

Easom’s test function has a sharp tip

2 2(,) cos()cos() exp () () ,⎡ ⎤= − − − − −⎣ ⎦f x y x y x yπ π (9)

in the domain (,) [100,100] [100,100].∈ − × −x y It has a global minimum of 1∗ = −f at
(,)π π in a very small region.

2

1 1

1() cos 1,
4000 = =

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
∑ ∏

dd
i

i
i i

x
f x x

i
 (10)

but a unique global minimum 0∗ =f at (0, 0, …, 0) for all –600 600≤ ≤ix where
1, 2, , .= …i d

3.3 Stochastic test functions

Almost all the test functions in literature are deterministic. It is usually more difficult for
algorithms to deal with stochastic functions. We have designed some stochastic test
functions for such a purpose.

The first test function designed by Yang (2010) looks like a standing-wave function
with a region of defects

() ()2 2
1 1 2

1

() 2 cos , 5,= =
− − −

=

⎡ ⎤
= ⎣ − ⎦ ⋅ =∑ ∑ ∏

d dm
i i ii i

d
x x

i
i

f e e x m
β πε

x (11)

which has many local minima and the unique global minimum 1∗ = −f at
(, , ,)∗ = …π π πx for 15=β within the domain –20 20≤ ≤ix for 1, 2, , .= …i d Here the

random variables (1,2, ,)= …i i dε are uniformly distributed in (0, 1). For example, if all
iε are relatively small (say order of 0.05), a snapshot of the landscape in 2D is shown in

Figure 4, while for higher values such as 0.5 the landscape is different, also shown in
Figure 4.

 Engineering optimisation by cuckoo search 337

Figure 4 Landscape of stochastic function (11) for small ε (left) and large ε (right)

−10

0

10 −10

0

10
−1

−0.5

0

0.5

1

−5

0

5 −5
0

5

−1

−0.5

0

0.5

1

Yang’s second test function is also multimodal but it has a singularity

()2

1 1

() exp sin ,
= =

⎛ ⎞ ⎡ ⎤
= −⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

∑ ∑
d d

i i i
i i

f x xεx (12)

which has a unique global minimum 0∗ =f at (0,0, ,0)∗ = …x in the domain
–2 2≤ ≤ixπ π where 1, 2, ,= …i d (Yang, 2010). This function is singular at the
optimum (0, …, 0). Similarly, iε should be drawn from a uniform distribution in [0, 1] or
Unif[0, 1]. In fact, using the same methodology, we can turn many determistic functions
into stochastic test functions. For example, we can extend Robsenbrock’s function as the
following stochastic function

() ()
1 22 2

1
1

() 1 100
−

+
=

⎡ ⎤= − − + −⎣ ⎦∑
d

i i i i
i

f x x xεx (13)

where iε should be drawn from Unif[0, 1]. Similarly, we can also extend De Jong’s
function into its corresponding stochastic form

2

1

() ,
=

= −∑
d

i i
i

f xεx (14)

which still has the same global minimum 0∗ =f at (0, 0, …, 0), despite its stochastic
nature due to the factor .iε . For stochastic functions, most deterministic algorithms such
as hill climbing and Nelder-Mead downhill simplex method would simply fail. However,
we can see later that most metaheuristic algorithms such as PSO and CS are still robust.

3.4 Simulations and comparison

Recent studies indicate that PSO can outperform GA and other conventional algorithms
(Goldberg, 1989; Kennedy et al., 2001; Yang 2008).

 338 X-S. Yang and S. Deb

Figure 5 The initial location of 20 nests (left) for function (11) and their final locations after
15 iterations (right)

−10 −5 0 5 10
−10

−5

0

5

10

−10 −5 0 5 10
−10

−5

0

5

10

This can be attributed partly to the broadcasting ability of the current best estimates,
potentially leading to a better and quicker convergence rate towards the optimality. A
general framework for evaluating statistical performance of evolutionary algorithms has
been discussed in detail by Shilane et al. (2008).

Now we can compare the CS with PSO and GA for various test functions. After
implementing these algorithms using Matlab, we have carried out extensive simulations
and each algorithm has been run at least 100 times so as to carry out meaningful
statistical analysis. The algorithms stop when the variations of function values are less
than a given tolerance 1510 .−≤ε The results are summarised in Table 1 where the
numbers are in the format: average number of evaluations ± one standard deviation
(success rate), so 3321 ± 519 (100%) means that the average number (mean) of function
evaluations is 3321 with a standard deviation of 519. The success rate of finding the
global optima for this algorithm is 100%. The functions used in the Table are

1 Michaelwicz (16)=d .

2 Rosenrbrock (16)=d .

3 De Jong (32)=d .

4 Schwefel (32)=d .

5 Ackley (128)=d .

6 Rastrigin.

7 Easom.

8 Griewank.

9 Yang’s first stochastic function.

10 Yang’s second stochastic function.

 Engineering optimisation by cuckoo search 339

11 Generalised Robsenbrock’s function with stochastic components.

12 De Jong’s stochastic function. The value of d = 16 is used for all other cases, if not
stated.

We can see that CS is much more efficient in finding the global optima with higher
success rates. Each function evaluation is virtually instantaneous on a modern personal
computer. For example, the computing time for 10,000 evaluations on a 3 GHz desktop is
about five seconds. In addition, for stochastic functions, GAs do not perform well, while
PSO is better. However, CS is far more promising.

4 Engineering design

Design optimisation is an integrated part of designing any new products in engineering
and industry. Most design problems are complex and multi-objective, sometimes even the
optimal solutions of interest do not exist. In order to see how the CS algorithm may
perform, we now use two standard but well-known test problems.

Table 1 Comparison of CS with GAs and particle swarm optimisation

Functions GA PSO CS

1 89325 ± 7914(95%) 6922 ± 537(98%) 3221 ± 519(100%)

2 55723 ± 8901(90%) 32756 ± 5325(98%) 5923 ± 1937(100%)

3 15232 ± 1270(100%) 10079 ± 970(100%) 3015 ± 540(100%)

4 23790 ± 6523(95%) 92411 ± 1163(97%) 4710 ± 592(100%)

5 32720 ± 3327(90%) 23407 ± 4325(92%) 4936 ± 903(100%)

6 110523 ± 5199(77%) 79491 ± 3715(90%) 10354 ± 3755(100%)

7 19239 ± 3307(92%) 17273 ± 2929(90%) 6751 ± 1902(100%)

8 70925 ± 7652(90%) 55970 ± 4223(92%) 10912 ± 4050(100%)

9 79025 ± 6312(49%) 34056 ± 4470(90%) 11254 ± 2733(99%)

10 35072 ± 3730(54%) 22360 ± 2649(92%) 8669 ± 3480(98%)

11 63268 ± 5091(40%) 49152 ± 6505(89%) 10564 ± 4297(99%)

12 24164 ± 4923(68%) 11780 ± 4912(94%) 7723 ± 2504(100%)

4.1 Spring design optimisation

Tensional and/or compressional springs are used widely in engineering (Arora, 1989;
Belegundu, 1982). A standard spring design problem has three design variables: the wire
diameter ,w the mean coil diameter ,d and the length (or number of coils) .L

2Minimise () (2) ,= +f L w dx (15)

 340 X-S. Yang and S. Deb

subject to
3

1 4

2 2

3

4 3 2

() 1 0,
7178
140.45() 1 0,

2()() 1 0,
3
(4) 1() 1 0,

(12566) 5108

= − ≤

= − ≤

+
= − ≤

−
= + − ≤

−

d L
g

w
w

g
d L

w d
g

d d w
g

w d w w

x

x

x

x

 (16)

with the following limits

0.05 2.0, 0.25 1.3, 2.0 15.0.≤ ≤ ≤ ≤ ≤ ≤w d L (17)

Using CS, we have obtained the following optimal solution

(0.0500000,0.2500000,9.9876768),∗ =x (18)

with

min 0.007492298,=f (19)

which is better or lower than the best solution obtained by Cagnina et al. (2008)

0.012665 at (0.051690, 0.356750, 11.287126).∗ =f (20)

4.2 Welded beam design

The so-called welded beam design is another standard test problem for constrained design
optimisation (Ragsdell and Phillips, 1976; Cagnina et al., 2008). The problem has four
design variables: the width w and length L of the welded area, the depth h and
thickness h of the main beam. The objective is to minimise the overall fabrication cost,
under the appropriate constraints of shear stress ,τ bending stress ,σ buckling load P
and maximum end deflection.

The problem can be written as
2Minimise () 1.10471 0.04811 (14.0),= + +f w L dh Lx (21)

subject to

1

2

3

4
2

5

6

7

() 0,
() () 0.25 0,
() () 13,600 0,
() () 30,000 0,

() 0.10471 0.04811 (14) 5.0 0,
() 0.125 0,
() 6000 () 0,

= − ≤
= − ≤
= − ≤

= − ≤

= + + − ≤

= − ≤

= − ≤

g w h

g

g

g

g w hd L

g w

g P

x

x x

x x

x x

x

x

x x

δ
τ

σ (22)

 Engineering optimisation by cuckoo search 341

where

2

2 2
2 2

3

2 2

3
6

504,000() , 6000 14 ,
2

1 ()() , 2 ,
2 6 2

65,856 , ,
30,000

6000 , ()
2

30 48
0.61423 10 1 .

6 28

D

⎛ ⎞= = +⎜ ⎟
⎝ ⎠
⎡ ⎤+

= + + = +⎢ ⎥
⎣ ⎦

= =

= = + +

⎛ ⎞
= × −⎜ ⎟⎜ ⎟

⎝ ⎠

σ

δ β

αβ
α τ α β

L
Q

hd

L w d
D L w d J wL

Q
Jhd

L
DwL

ddh
P

x

x

 (23)

The simple limits or bounds are 0.1 , 10≤ ≤L d and 0.1 , 2.0.≤ ≤w h
Using our CS, we have the following optimal solution

(, , ,) (0.1701244,10.0000000,3.1821349,0.2725074),∗ = =w L d hx (24)

with

min() 1.32098089.∗ =f x (25)

This solution is better than the solution obtained by Cagnina et al. (2008)

1.724852 at (0.205730,3.470489,9.036624,0.205729).∗ =f (26)

We have seen that, for both test problems, CS has found the optimal solutions which are
better than any solutions found so far in literature.

5 Discussions and conclusions

From the comparison study of the performance of CS with GAs and PSO, we know that
our new CS in combination with Lévy flights is very efficient and proves to be superior
for almost all the test problems. This is partly due to the fact that there are fewer
parameters to be fine-tuned in CS than in PSO and GAs. In fact, apart from the
population size n, there is essentially one parameter pa. If we look at the CS algorithm
carefully, there are essentially three components: selection of the best, exploitation by
local random walk and exploration by randomisation via Lévy flights globally.

The selection of the best by keeping the best nests or solutions is equivalent to some
form of elitism commonly used in GAs, which ensures the best solution is passed onto
the next iteration and there is no risk that the best solutions are cast out of the population.
The exploitation around the best solutions is performed by using a local random walk

1 .+ = +t t
tαεx x (27)

If tε obeys a Gaussian distribution, this becomes a standard random walk indeed. This is
equivalent to the crucial step in pitch adjustment in harmony search (Geem et al., 2001;

 342 X-S. Yang and S. Deb

Yang, 2009). If tε is drawn from a Lévy distribution, the step of move is larger and
could be potentially more efficient. However, if the step is too large, there is risk that the
move is too far away. Fortunately, the elitism by keeping the best solutions makes sure
that the exploitation moves are within the neighbourhood of the best solutions locally.

On the other hand, in order to sample the search space effectively so that new
solutions to be generated are diverse enough, the exploration step is carried out in terms
of Lévy flights. In contrast, most metaheuristic algorithms use either uniform
distributions or Gaussian to generate new explorative moves (Geem et al., 2001, Blum
and Roli, 2003). If the search space is large, Lévy flights are usually more efficient. A
good combination of the above three components can thus lead to an efficient algorithm
such as CS.

Furthermore, our simulations also indicate that the convergence rate is insensitive to
the algorithm-dependent parameters such as pa. This also means that we do not have to
fine tune these parameters for a specific problem. Subsequently, CS is more generic and
robust for many optimisation problems, comparing with other metaheuristic algorithms.

This potentially powerful optimisation strategy can easily be extended to study
multi-objecitve optimisation applications with various constraints, including NP-hard
problems. Further studies can focus on the sensitivity and parameter studies and their
possible relationships with the convergence rate of the algorithm. In addition,
hybridisation with other popular algorithms such as PSO will also be potentially fruitful.
More importantly, as for most metaheuristic algorithms, mathematical analysis of the
algorithm structures is highly needed. At the moment, no such framework exists for
analyzing metaheuristics in general. Any progress in this area will potentially provide
new insight into the understanding of how and why metaheuristic algorithms work.

References
Arora, J. (1989) Introduction to Optimum Design, McGraw-Hill.
Barthelemy, P., Bertolotti, J. and Wiersma, D.S. (2008) ‘A Lévy flight for light’, Nature, Vol. 453,

pp.495–498.
Belegundu, A. (1982) ‘A study of mathematical programming methods for structural optimization’,

PhD thesis, Department of Civil Environmental Engineering, University of Iowa, USA.
Blum, C. and Roli, A. (2003) ‘Metaheuristics in combinatorial optimization: overview and

conceptural comparision’, ACM Comput. Surv., Vol. 35, pp.268–308.
Brown, C., Liebovitch, L.S. and Glendon, R. (2007) ‘Lévy flights in Dobe Ju/’hoansi

foragingpatterns’, Human Ecol., Vol. 35, pp.129–138.
Cagnina, L.C., Esquivel, S.C. and Coello, C.A. (2008) ‘Solving engineering optimization problems

with the simple constrained particle swarm optimizer’, Informatica, Vol. 32, pp.319–326.
Chattopadhyay, R. (1971) ‘A study of test functions for optimization algorithms’, J. Opt. Theory

Appl., Vol. 8, pp.231–236.
Deb, K. (1995) Optimisation for Engineering Design, Prentice-Hall, New Delhi.
Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gumus, Z.H., Harding, S.T.,

Klepeis, J.L., Meyer, C.A. and Scheiger, C.A. (1999) Handbook of Test Problems in Local
and Global Optimization, Springer.

Gazi, K. and Passino, K.M. (2004) ‘Stability analysis of social foraging swarms’, IEEE Trans. Sys.
Man. Cyber. Part B – Cybernetics, Vol. 34, pp.539–557.

Geem, Z.W., Kim, J.H. and Loganathan, G.V. (2001) ‘A new heuristic optimization algorithm:
harmony search’, Simulation, Vol. 76, pp.60–68.

 Engineering optimisation by cuckoo search 343

Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimisation and Machine Learning,
Addison Wesley, Reading, Mass.

Hedar, A. (2005) Test Function Web Pages, available at
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar files/TestGO
files/Page364.htm.

Kennedy, J. and Eberhart, R.C. (1995) ‘Particle swarm optimization’, Proc. of IEEE International
Conference on Neural Networks, Piscataway, NJ, pp.1942–1948.

Kennedy, J., Eberhart, R.C. and Shi, Y. (2001) Swarm Intelligence, Academic Press.
Molga, M. and Smutnicki, C. (2005) Test Functions For Optimization Needs, available at

http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf.
Passino, K.M. (2001) Biomimicry of Bacterial Foraging for Distributed Optimization, University

Press, Princeton, New Jersey.
Pavlyukevich, I. (2007) ‘Lévy flights, non-local search and simulated annealing’, J. Computational

Physics, Vol. 226, pp.1830–1844.
Payne, R.B., Sorenson, M.D. and Klitz, K. (2005) The Cuckoos, Oxford University Press.
Ragsdell, K. and Phillips, D. (1976) ‘Optimal design of a class of welded structures using

geometric programming’, J. Eng. Ind., Vol. 98, pp.1021–1025.
Reynolds, A.M. and Frye, M.A. (2007) ‘Free-flight odor tracking in Drosophila is consistent with

an optimal intermittent scale-free search’, PLoS One, Vol. 2, p.e354.
Schoen, F. (1993) ‘A wide class of test functions for global optimization’, J. Global Optimization,

Vol. 3, pp.133–137.
Shang, Y.W., Qiu, Y.H. (2006) ‘A note on the extended rosenrbock function’, Evolutionary

Computation, Vol. 14, pp.119–126.
Shilane, D., Martikainen, J., Dudoit, S. and Ovaska, S.J. (2008) ‘A general framework for statistical

performance comparison of evolutionary computation algorithms’, Information Sciences, Vol.
178, pp.2870–2879.

Shlesinger, M.F. (2006) ‘Search research’, Nature, Vol. 443, pp.281–282.
Yang, X.S. (2005) ‘Biology-derived algorithms in engineering optimizaton’ in Olarius and Zomaya

(Eds.): Handbook of Bioinspired Algorithms and Applications, Chapter 32, Chapman &
Hall/CRC.

Yang, X.S. (2008) Nature-Inspired Metaheuristic Algorithms, Luniver Press.
Yang, X.S. (2009) ‘Harmony search as a metaheuristic algorithm’, in Z.W. Geem (Ed.):

Music-Inspired Harmony Search: Theory and Applications, Springer, pp.1–14.
Yang, X.S. (2010) Engineering Optimisation: An Introduction with Metaheuristic Applications,

John Wiley and Sons.
Yang, X.S. and Deb, S. (2009) ‘Cuckoo search via Lévy flights’, Proceeings of World Congress on

Nature & Biologically Inspired Computing,(NaBIC 2009, India), IEEE Publications, USA,
pp.210–214.

