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Abstract—This paper presents a variant of particle swarm
optimizers (PSOs) that we call the comprehensive learning par-
ticle swarm optimizer (CLPSO), which uses a novel learning
strategy whereby all other particles’ historical best information
is used to update a particle’s velocity. This strategy enables the
diversity of the swarm to be preserved to discourage premature
convergence. Experiments were conducted (using codes available
from http://www.ntu.edu.sg/home/epnsugan) on multimodal test
functions such as Rosenbrock, Griewank, Rastrigin, Ackley,
and Schwefel and composition functions both with and without
coordinate rotation. The results demonstrate good performance of
the CLPSO in solving multimodal problems when compared with
eight other recent variants of the PSO.

Index Terms—Composition benchmark functions, comprehen-
sive learning particle swarm optimizer (CLPSO), global numerical
optimization, particle swarm optimizer (PSO).

I. INTRODUCTION

OPTIMIZATION has been an active area of research
for several decades. As many real-world optimization

problems become increasingly complex, better optimization
algorithms are always needed. Unconstrained optimization
problems can be formulated as a -dimensional minimization
problem as follows:

where is the number of the parameters to be optimized.

The particle swarm optimizer (PSO) [1], [2] is a relatively
new technique. Although PSO shares many similarities with
evolutionary computation techniques, the standard PSO does
not use evolution operators such as crossover and mutation.
PSO emulates the swarm behavior of insects, animals herding,
birds flocking, and fish schooling where these swarms search
for food in a collaborative manner. Each member in the swarm
adapts its search patterns by learning from its own experience
and other members’ experiences. These phenomena are studied
and mathematical models are constructed. In PSO, a member
in the swarm, called a particle, represents a potential solution
which is a point in the search space. The global optimum is re-
garded as the location of food. Each particle has a fitness value
and a velocity to adjust its flying direction according to the best
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experiences of the swarm to search for the global optimum in
the -dimensional solution space.

The PSO algorithm is easy to implement and has been empir-
ically shown to perform well on many optimization problems.
However, it may easily get trapped in a local optimum when
solving complex multimodal problems. In order to improve
PSO’s performance on complex multimodal problems, we
present the comprehensive learning particle swarm optimizer
(CLPSO) utilizing a new learning strategy.

This paper is organized as follows. Section II introduces the
original PSO and some current variants of the original PSO.
Section III describes the comprehensive learning particle swarm
optimizer. Section IV presents the test functions, the experi-
mental setting for each algorithm, the results, and discussions.
Conclusions are given in Section V.

II. PARTICLE SWARM OPTIMIZERS

A. Particle Swarm Optimizer

PSO emulates the swarm behavior and the individuals repre-
sent points in the -dimensional search space. A particle repre-
sents a potential solution. The velocity and position of
the th dimension of the th particle are updated as follows [1],
[2]:

(1)

(2)

where is the position of the th par-
ticle; represents velocity of particle
. is the best previous

position yielding the best fitness value for the th particle; and
is the best position dis-

covered by the whole population. and are the accelera-
tion constants reflecting the weighting of stochastic accelera-
tion terms that pull each particle toward and posi-
tions, respectively. and are two random num-
bers in the range [0, 1]. A particle’s velocity on each dimension
is clamped to a maximum magnitude . If exceeds a
positive constant value specified by the user, then the ve-
locity of that dimension is assigned to .

When updating the velocity of a particle using (1), dif-
ferent dimensions have different and . Some
researchers use the following updating equation:

(3)
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Fig. 1. Flowchart of the conventional PSO.

Comparing the two variants in (1) and (3), the former can
have a larger search space due to independent updating of each
dimension, while the second is dimension-dependent and has
a smaller search space due to the same random numbers being
used for all dimensions. Equation (1) always yields better per-
formance on unrotated problems than the rotated version of the
problems. Equation (3) performs consistently on unrotated and
rotated problems [3]. As the first updating strategy achieves a
larger search space and always performs better, we use (1) in
this paper. The flowchart of the standard PSO employing (1) is
given in Fig. 1.

B. Some Variants PSO

Since its introduction in 1995 by Kennedy and Eberhart [1],
[2], PSO has attracted a high level of interest [4]–[7]. Many re-
searchers have worked on improving its performance in various
ways, thereby deriving many interesting variants. One of the
variants [8] introduces a parameter called inertia weight into
the original PSO algorithms as follows:

(4)

The inertia weight is used to balance the global and local
search abilities. A large inertia weight is more appropriate for
global search, and a small inertia weight facilitates local search.

A linearly decreasing inertia weight over the course of search
was proposed by Shi and Eberhart [8]. Parameters in PSO are
discussed in [9]. Shi and Eberhart designed fuzzy methods
to nonlinearly change the inertia weight [10]. In [11], inertia
weight is set at zero, except at the time of reinitialization. In ad-
dition to the time-varying inertia weight, a linearly decreasing

is introduced in [12]. By analyzing the convergence
behavior of the PSO, a PSO variant with a constriction factor
was introduced by Clerc and Kennedy [13]. Constriction factor
guarantees the convergence and improves the convergence
velocity.

Improving PSO’s performance by designing different types
of topologies has been an active research direction. Kennedy
[14], [15] claimed that PSO with a small neighborhood might
perform better on complex problems, while PSO with a large
neighborhood would perform better on simple problems.
Suganthan [16] applied a dynamically adjusted neighborhood
where the neighborhood of a particle gradually increases until
it includes all particles. In [17], Hu and Eberhart also used
a dynamic neighborhood where closest particles in the
performance space are selected to be its new neighborhood
in each generation. Parsopoulos and Vrahatis combined the
global version and local version together to construct a unified
particle swarm optimizer (UPSO) [18]. Mendes and Kennedy
introduced a fully informed PSO in [19]. Instead of using the

and positions in the standard algorithm, all the
neighbors of the particle are used to update the velocity. The
influence of each particle to its neighbors is weighted based on
its fitness value and the neighborhood size. Veeramachaneni et
al. developed the fitness-distance-ratio-based PSO (FDR-PSO)
with near neighbor interactions [20]. When updating each
velocity dimension, the FDR-PSO algorithm selects one other
particle , which has a higher fitness value and is nearer to
the particle being updated.

Some researchers investigated hybridization by combining
PSO with other search techniques to improve the performance
of the PSO. Evolutionary operators such as selection, crossover,
and mutation have been introduced to the PSO to keep the best
particles [21], to increase the diversity of the population, and to
improve the ability to escape local minima [22]. Mutation op-
erators are also used to mutate parameters such as the inertia
weight [23]. Relocating the particles when they are too close to
each other [24] or using some collision-avoiding mechanisms
[25] to prevent particles from moving too close to each other in
order to maintain the diversity and to escape from local optima
has also been used. In [22], the swarm is divided into subpopula-
tions, and a breeding operator is used within a subpopulation or
between the subpopulations to increase the diversity of the pop-
ulation. Negative entropy is used to discourage premature con-
vergence in [27]. In [28], deflection, stretching, and repulsion
techniques are used to find as many minima as possible by pre-
venting particles from moving to a previously discovered min-
imal region. Recently, a cooperative particle swarm optimizer
(CPSO-H) [29] was proposed. Although CPSO-H uses one-di-
mensional (1-D) swarms to search each dimension separately,
the results of these searches are integrated by a global swarm
to significantly improve the performance of the original PSO on
multimodal problems.
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III. COMPREHENSIVE LEARNING PARTICLE SWARM OPTIMIZER

Although there are numerous variants for the PSO, prema-
ture convergence when solving multimodal problems is still the
main deficiency of the PSO. In the original PSO, each par-
ticle learns from its and simultaneously. Restricting
the social learning aspect to only the makes the original
PSO converge fast. However, because all particles in the swarm
learn from the even if the current is far from the
global optimum, particles may easily be attracted to the
region and get trapped in a local optimum if the search envi-
ronment is complex with numerous local solutions. As

, the fitness value of a particle is possibly
determined by values of all parameters, and a particle that
has discovered the region corresponding to the global optimum
in some dimensions may have a low fitness value because of the
poor solutions in the other dimensions. In order to make better
use of the beneficial information, we proposed new learning
strategies to improve the original PSO [30]. In [30], all parti-
cles’ are used to update the velocity of any one particle.
This novel strategy ensures that the diversity of the swarm is pre-
served to discourage premature convergence. Three versions of
PSO using the comprehensive learning strategy were discussed
and demonstrated with significantly improved performances on
solving multimodal problems in comparison to several other
variants of the PSO. Among the three variants, the CLPSO is
the best, based on the results. Hence, we further investigate the
CLPSO in this paper.

A. Compehensive Learning Strategy

In this new learning strategy, we use the following velocity
updating equation:

(5)

where defines which particles’
s the particle should follow. can be the cor-

responding dimension of any particle’s including its own
, and the decision depends on probability , referred to

as the learning probability, which can take different values for
different particles. For each dimension of particle , we generate
a random number. If this random number is larger than , the
corresponding dimension will learn from its own ; other-
wise it will learn from another particle’s . We employ the
tournament selection procedure when the particle’s dimension
learns from another particle’s as follows.

1) We first randomly choose two particles out of the popu-
lation which excludes the particle whose velocity is up-
dated.

2) We compare the fitness values of these two particles’
s and select the better one. In CLPSO, we define the

fitness value the larger the better, which means that when
solving minimization problems, we will use the negative
function value as the fitness values.

3) We use the winner’s as the exemplar to learn from
for that dimension. If all exemplars of a particle are its
own , we will randomly choose one dimension to
learn from another particle’s ’s corresponding di-
mension. The details of choosing are given in Fig. 2.

Fig. 2. Selection of exemplar dimensions for particle i.

All these can generate new positions in the search
space using the information derived from different particles’
historical best positions. To ensure that a particle learns from
good exemplars and to minimize the time wasted on poor direc-
tions, we allow the particle to learn from the exemplars until the
particle ceases improving for a certain number of generations
called the refreshing gap , then we reassign for the particle.
We observe three main differences between the CLPSO and the
original PSO [2].

1) Instead of using particle’s own and as the
exemplars, all particles’ s can potentially be used as
the exemplars to guide a particle’s flying direction.

2) Instead of learning from the same exemplar particle for
all dimensions, each dimension of a particle in general
can learn from different s for different dimensions
for a few generations. In other words, each dimension of
a particle may learn from the corresponding dimension of
different particle’s .

3) Instead of learning from two exemplars ( and )
at the same time in every generation as in the original PSO
(1) and (3), each dimension of a particle learns from just
one exemplar for a few generations.

B. CLPSO’s Search Behavior

The above operations increase the swarm’s diversity to yield
improved performance when solving complex multimodal prob-
lems. In the original PSO, for a certain dimension, if the
and are on opposite sides of the particle’s current position
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Fig. 3. The CLPSO’s and the original PSO’s possible search regions per variable in a swarm with five members. (a) X � min(pbest ). X � max(pbest ).
(b) X < min(pbest ). (c) X > max(pbest ).

, the and may make the particle oscillate. How-
ever, the is more likely to provide a larger momentum, as

is likely to be larger than the . Hence, the
may influence the particle to move in its direction even if

it is in a local optimum region far from the global optimum. If
and are on the same side of the particle’s current po-

sition and if it points to a local optimum, the particle will move
in that direction and it may be impossible to jump out of the
local optimum area once its falls into the same local op-
timum region where the is. However, in our new learning
strategy, the particle can fly in other directions by learning from
other particles’ when the particle’s and fall
into the same local optimum region. Hence, our new learning
strategy has the ability to jump out of local optimum via the co-
operative behavior of the whole swarm.

In order to compare the original PSO’s and CLPSO’s poten-
tial search spaces, first we omit the old velocity com-
ponent. If we let , in the original PSO and in CLPSO all
be equal to one, the update equations of the original PSO and
CLPSO reduce to the following equations:

(6)

(7)

Let us consider the fourth particle in a swarm with five
members as an example. The potential search spaces of the
original PSO and the CLPSO on one dimension are plotted as a
line in Fig. 3. For the fourth particle whose position is , three
different cases are illustrated in Fig. 3: (a)
and ; (b) ; and
(c) , . In this ex-
ample, is the , is the , and

is the ,

We extend the three cases to the th dimension of the th par-
ticle in a swarm of size . Let the length of the potential space
of the PSO and CLPSO for the th dimension of the th par-
ticle be and , respectively. We obtain the potential search
ranges for the th particle of PSO as

(8)

and CLPSO, as shown in (9) at the bottom of the page.
Hence, the volumes of PSO’s and CLPSO’s potential search

spaces for the th particle are and ,
respectively. and are the mean values of the volumes
of PSO’s and CLPSO’s potential search spaces for the whole
swarm. In order to compare the potential search spaces of PSO
and CLPSO, both algorithms are run 20 times on a (unimodal)
sphere function and a (multimodal) Rastrigin function defined in
Section IV-A. , , and in each iteration are recorded.
Table I presents ’s mean value of the 20 runs. and
and versus the iterations are plotted in Fig. 4.

From Table I and Fig. 4, we observe that CLPSO’s updating
strategy yields a larger potential search space than that of the
original PSO. The multimodal Rastrigin’s function’s mean

is ten times larger than that of the unimodal sphere
function. By increasing each particle’s potential search space,
the diversity is also increased. As each particle’s is
possibly a good area, the search of CLPSO is neither blind nor
random. Compared to the original PSO, CLPSO searches more
promising regions to find the global optimum. Experimental
results in Section IV support this description.

C. Learning Probability

From our previous experiments [31], we found that different
values yielded different results on the same problem if the

same value was used for all the particles in the popula-
tion. On unrotated problems, smaller values perform better,

(9)
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Fig. 4. Comparison of PSO’s and CLPSO’s potential search space. (a) R and R for sphere function. (b) R and R for Rastrigin’s function. (c) R =R for
sphere function. (d) R =R for Rastrigin’s function.

TABLE I
MEAN VALUE OF R =R FOR SPHERE AND

RASTRIGIN FUNCTIONS IN 20 RUNS

while on the rotated problems, different values yield the
best performance for different problems. Different values
yield similar results on simple unimodal problems while seri-
ously affecting CLPSO’s performance on multimodal problems.
In order to address this problem in a general manner, we pro-
pose to set such that each particle has a different value.
Therefore, particles have different levels of exploration and ex-
ploitation ability in the population and are able to solve diverse
problems. We empirically developed the following expression
to set a value for each particle:

(10)

Fig. 5 presents an example of assigned for a population
of 30. Each particle from 1 to 30 has a value ranging from
0.05 to 0.5.

D. Implementation of Search Bounds

Though we have shown in [30] the CLPSO to be ro-
bust to initialization and independent of upper and lower

Fig. 5. Each particle’s Pc with a population size of 30.

search bounds, in many practical problems, there are bounds
on the variables’ ranges. The search range for a problem
is . In order to prevent particles moving out
of the search bounds, some researchers use the equation

to restrain a particle on
the border. In our algorithm, we use a different method to con-
strain the particles within the range as follows: Calculate the
fitness value of a particle and update its and only if
the particle is in the range. Since all exemplars are within the
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Fig. 6. Flowchart of the CLPSO algorithm.

range, the particle will eventually return to the search range.
The complete flowchart of the CLPSO is given in Fig. 6.

E. Adjusting the Refreshing Gap

The refreshing gap parameter needs be tuned. In this sec-
tion, six different kinds of ten-dimensional (10-D) test functions
are used to investigate the impact of this parameter. They are
the sphere, Rosenbrock, Ackley, Griewank, Rastrigin, and ro-
tated Rastrigin functions as defined in Section IV. The CLPSO
is run 20 times on each of these functions, and the mean values
of the final results are plotted in Fig. 7. As all test functions are
minimization problems, the smaller the final result, the better
it is. From Fig. 7, we can observe that can influence the re-
sults. When is zero, we obtained a faster convergence velocity

Fig. 7. CLPSO’s results on six test functions with different refreshing gapm.

Fig. 8. The landscape maps of Group D problems. (a) Composition function
1 (CF1). (b) Composition function 5 (CF5).

and better results on the sphere function. For the other five test
functions, better results were obtained when is around seven.
Hence, in our experiments, the refreshing gap is set at seven
for all test functions.
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IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Test Functions

As we wish to test the CLPSO on diverse test functions and
our main objective is to improve PSO’s performance on mul-
timodal problems, we choose two unimodal functions and 14
multimodal benchmark functions [32]–[35]. All functions are
tested on ten and 30 dimensions. According to their properties,
these functions are divided into four groups: unimodal prob-
lems, unrotated multimodal problems, rotated multimodal prob-
lems, and composition problems. The properties and the for-
mulas of these functions are presented below.

Group A: Unimodal and Simple Multimodal Problems:

1) Sphere function

(11)

2) Rosenbrock’s function

(12)

The first problem is the sphere function and is easy to solve. The
second problem is the Rosenbrock function. It can be treated as
a multimodal problem. It has a narrow valley from the perceived
local optima to the global optimum. In the experiments below,
we find that the algorithms that perform well on sphere function
also perform well on Rosenbrock function.

Group B: Unrotated Multimodal Problems:

3) Ackley’s function

(13)

4) Griewanks’s function

(14)

5) Weierstrass function

(15)

6) Rastrigin’s function

(16)

7) Noncontinuous Rastrigin’s function

(17)

8) Schwefel’s function

(18)

In this group, there are six multimodal test functions.
Ackley’s function has one narrow global optimum basin and
many minor local optima. It is probably the easiest problem
among the six as its local optima are shallow. Griewank’s
function has a component causing linkages
among variables, thereby making it difficult to reach the global
optimum. An interesting phenomenon of Griewank’s function
is that it is more difficult for lower dimensions than higher
dimensions [36]. The Weierstrass function is continuous but
differentiable only on a set of points. Rastrigin’s function
is a complex multimodal problem with a large number of
local optima. When attempting to solve Rastrigin’s function,
algorithms may easily fall into a local optimum. Hence, an
algorithm capable of maintaining a larger diversity is likely
to yield better results. Noncontinuous Rastrigin’s function is
constructed based on the Rastrigin’s function and has the same
number of local optima as the continuous Rastrigin’s function.
The complexity of Schwefel’s function is due to its deep local
optima being far from the global optimum. It will be hard to
find the global optimum if many particles fall into one of the
deep local optima.

Group C: Rotated Multimodal Problems: In Group B, some
functions are separable and can be solved by using 1-D
searches, where is the dimensionality of the problem. Hence,
in Group C, we have four rotated multimodal problems. To
rotate a function, first an orthogonal matrix should be gener-
ated. The original variable is left multiplied by the orthogonal
matrix to get the new rotated variable . This
variable is used calculate the fitness value

(19)

(20)

When one dimension in vector is changed, all dimensions in
vector will be affected. Hence, the rotated function cannot be
solved by just one-dimensional searches. The orthogonal ro-
tation matrix does not affect the shape of the functions. In this
paper, we used Salomon’s method [37] to generate the orthog-
onal matrix.
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9) Rotated Ackley’s function

(21)

10) Rotated Griewanks’s function

(22)

11) Rotated Weierstrass function

(23)

12) Rotated Rastrigin’s function

(24)

13) Rotated noncontinuous Rastrigin’s function

(25)

14) Rotated Schwefel’s function

(26)

In rotated Schwefel’s function, in order to keep the global op-
timum in the search range after rotation, noting that the original
global optimum of Schwefel’s function is at [420.96, 420.96,

, 420.96 ], and are
used instead of . Since Schwefel’s function has better
solutions out of the search range , when ,

, i.e. is set in portion to the square
distance between and the bound.

Group D: Composition Problems: Composition functions
are constructed using some basic benchmark functions to obtain
more challenging problems with a randomly located global
optimum and several randomly located deep local optima. The

Gaussian function is used to combine the simple benchmark
functions and blur the function’s structures. The composi-
tion functions are asymmetrical multimodal problems, with
different properties in different areas. The details of how to
construct this class of functions and six composition functions
are presented in [38].1 Two of the six composition functions
defined in [38] are used here to test the CLPSO.

15) Composition function 1 (CF1) in [38]: (CF1) is
composed using ten sphere functions. The global op-
timum is easy to find once the global basin is found.

16) Composition function 5 (CF5) in [38]: (CF2) is
composed using ten different benchmark functions:
two rotated Rastrigin’s functions, two rotated Weier-
strass functions, two rotated Griewank’s functions,
two rotated Ackley’s functions, and two sphere func-
tions. CF5 is more complex than CF1 since even
after the global basin is found, the global optimum is
not easy to locate. The landscape maps of these two
composition functions are illustrated in Fig. 8.

The global optima , the corresponding fitness value ,
the search ranges , and the initialization range of
each function are given in Table II. Biased initializations are
used for the functions whose global optimum is at the centre of
the search range.

B. Parameter Settings for the Involved PSO Algorithms

Experiments were conducted to compare nine PSO algo-
rithms including the proposed CLPSO algorithm on the 16
test problems with ten dimensions and 30 dimensions. The
algorithms and parameters settings are listed below:

• PSO with inertia weight (PSO-w) [8];
• PSO with constriction factor (PSO-cf) [13];
• Local version of PSO with inertia weight (PSO-w-local);
• Local version of PSO with constriction factor (PSO-cf-

local) [15];
• UPSO [18];
• Fully informed particle swarm (FIPS) [19];
• FDR-PSO [20];
• CPSO-H [29];
• CLPSO.
Among these PSO local versions, PSO_w_local and

PSO_cf_local were chosen as these versions yielded the
best results [15] with von Neumann neighborhoods where
neighbors above, below, and one each side on a two-dimen-
sional lattice were connected. FIPS with U-ring topology that
achieved the highest success rate [19] is used. When solving
the 10-D problems, the population size is set at ten and the
maximum fitness evaluations (FEs) is set at 30 000. When
solving the 30-dimensional (30-D) problems, the population
size is set at 40 and the maximum FE is set at 200 000. All
experiments were run 30 times. The mean values and standard
deviation of the results are presented.

1More composition functions can be found at http://www.ntu.edu.sg/home/
EPNSugan/.
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TABLE II
GLOBAL OPTIMUM, SEARCH RANGES AND INITIALIZATION RANGES OF THE TEST FUNCTIONS

When solving real-world problems, usually the fitness calcu-
lation accounts for the most time as the PSO is highly compu-
tation efficient. Hence, the algorithm-related computation times
of these algorithms are not compared in this paper. Further, the
main difference between the CLPSO and the original PSO is
the modified velocity updating equation, which has been made
simpler in the CPSO. The complexity of the new algorithm is
similar to the original PSO. In the experiments, a serial imple-
mentation is used, while it is easy to be modified to a parallel
implementation. With a parallel form, the performance is likely
to be not affected much due to batch updating of while
computational efficiency improves.

C. Experimental Results and Discussions

1) Results for the 10-D Problems: Table III presents the
means and variances of the 30 runs of the nine algorithms
on the sixteen test functions with . The best results
among the nine algorithms are shown in bold. In order to deter-
mine whether the results obtained by CLPSO are statistically
different from the results generated by other algorithms, the
nonparametric Wilcoxon rank sum tests are conducted between
the CLPSO’s result and the best result achieved by the other
eight PSO versions for each problem. The values presented
in the last row of Tables III and IV are the results of -tests. An

value of one indicates that the performances of the two al-
gorithms are statistically different with 95% certainty, whereas

value of zero implies that the performances are not statisti-
cally different. Fig. 9 presents the convergence characteristics
in terms of the best fitness value of the median run of each
algorithm for each test function.

From the results, we observe that for the Group A unimodal
problems, since CLPSO has a large potential search space, it
could not converge as fast as the original PSO. CLPSO achieved
better results on all three multimodal groups than the original
PSO. CLPSO surpasses all other algorithms on functions 4,
5, 7, 8, 10, 12, 13, 14, 15, and 16, and especially significantly
improves the results on functions 7 and 8. According to the
results of -tests, these results are different from the second
best results. The CLPSO achieved the same best result as the
CPSO-H on function 6, and they both are much better than
the other variants on this problem. The FIPS also performs
well on multimodal problems. The FIPS performed better than
the CLPSO on functions 3, 9, and 11. However, the CLPSO
performs better on more complex problems when the other
algorithms miss the global optimum basin. The Schwefel’s
function is a good example, as it traps all other algorithms in
local optima. The CLPSO successfully avoids falling into the
deep local optimum which is far from the global optimum.
On the two composition functions with randomly distributed
local and global optima, CLPSO performs the best.

Comparing the results and the convergence graphs, among
these nine PSO algorithms, FDR-PSO has good local search
ability and converges fast. PSO with inertia weight (PSO-w)
and PSO with constriction factor (PSO-cf) are two global
versions where the whole population is the neighborhood. PSO
with constriction factor converges faster than the PSO with
inertia weight. But PSO with inertia weight performs better
on multimodal problems. UPSO combines global PSO and
local PSO together to yield a balanced performance between
the global and the local versions. PSO with inertia weight
(PSO-w-local), PSO with constriction factor (PSO-cf-local)
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TABLE III
RESULTS FOR 10-D PROBLEMS

and FIPS with a U-ring topology are all local versions. They
all perform better on multimodal problems than the global
versions. Among the three, FIPS yields a comparatively better
performance. CPSO-H presents good performance on some
unrotated multimodal problems and converges faster when
compared to CLPSO. However, its performance is seriously
affected after rotation. Although CLPSO’s performance is also
affected by the rotation, it still performs the best on four rotated

problems. It can be observed that all PSO variants failed on
the rotated Schwefel’s function, as it becomes much harder to
solve after applying rotation.

2) Results for the 30-D Problems: The experiments con-
ducted on 10-D problems are repeated on the 30-D problems
and the results presented in Table IV. As the convergence
graphs are similar to the 10-D problems, they are not presented.
From the results in Table IV, we can observe that the algorithms
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TABLE IV
RESULTS FOR 30-D PROBLEMS

achieved similar ranking as in the 10-D problems. CLPSO
surpasses all other algorithms on functions 3, 4, 7, 8, 10, 12, 13,
14, 15, and 16, and especially significantly improves the results
on functions 7 and 8. All 30-D functions become more difficult
than their 10-D counterparts, and the results are not as good as
in 10-D cases, although we increased the maximum number of
FEs from 30 000 to 200 000. Better results were achieved on
Griewank’s function, since this problem is known to become
easier as the number of dimensions increases [36]. The results

of composition functions are not affected much since we use
the same number of subfunctions with the same fixed local
optima values [38].

3) Discussion: By analyzing the results of the CLPSO
on 10-D and 30-D problems, one may conclude that the
CLPSO does not perform the best for unimodal and simple
multimodal problems in Group A. According to the “no
free lunch” theorem [39], “any elevated performance over
one class of problems is offset by performance over another
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Fig. 9. The median convergence characteristics of 10-D test functions. (a) Sphere function. (b) Rosenbrock’s function. (c) Ackley’s function. (d) Griewank’s
function. (e) Weierstrass function. (f) Rastrigin’s function. (g) Noncontinuous Rastrigin’s function. (h) Schwefel’s function.

class.” There is a cost for tuning the CLPSO to obtain better
performance on multimodal problems, and the cost is the
slow convergence on unimodal problems. Therefore, we may
not expect the best performance on all classes of problems,

as the proposed CLPSO focuses on improving the PSO’s
performance on multimodal problems.

The CLPSO achieves the best results on most complex mul-
timodal problems in Groups B to D, especially on Group B
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Fig. 9. (Continued.) The median convergence characteristics of 10-D test functions. (j) Rotated Griewanks’s function. (k) Rotated Weierstrass function. (l) Rotated
Rastrigin’s function. (m) Rotated noncontinuous Rastrigin’s function. (n) Rotated Schwefel’s function. (o) Composition function 1 (CF1). (p) Composition function
5 (CF5).

unrotated multimodal problems. This implies that the CLPSO
is more effective in solving problems with less linkage. This
property is due to the PSO’s dimension-wise updating rule, as
well as CLPSO’s learning of different dimensions from dif-
ferent exemplars. On more complex asymmetrical landscapes

in Group D, CLPSO performs better when comparing with the
other algorithms.

With the new updating rule, different dimensions may learn
from different exemplars. Due to this, the CLPSO explores a
larger search space than the original PSO. The larger search
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space is not achieved randomly. Instead, it is based on the his-
torical search experience. Because of this, the CLPSO performs
comparably to or better than many PSO variants on most of the
multimodal problems experimented in this paper.

V. CONCLUSION

This paper presents a comprehensive learning PSO em-
ploying a novel learning strategy where other particles’
previous best positions are exemplars to be learned from by
any particle and each dimension of a particle can potentially
learn from a different exemplar. The new strategy makes the
particles have more exemplars to learn from and a larger
potential space to fly. From the analysis and experiments, we
observe that this learning strategy enables the CLPSO to make
use of the information in swarm more effectively to generate
better quality solutions frequently when compared to eight
PSO variants. Based on the results of the nine algorithms on
the 16 chosen test problems belonging to four classes, we can
conclude that CLPSO significantly improves the PSO’s per-
formance and gives the best performance on most multimodal
problems irrespective of whether they are unrotated or rotated
when compared with eight other PSO versions.

Although the CLPSO is not the best choice for solving uni-
modal problems, when solving real-world problems, we do not
frequently know the shape of the fitness landscape. Hence, it is
advisable to use an algorithm that performs well on multimodal
problems since such an algorithm can also solve unimodal prob-
lems. By combining the CLPSO with a local search method such
as the quasi-Newton method, unimodal problems may be solved
more efficiently.

Another attractive property of the CLPSO is that it does not
introduce any complex operations to the original simple PSO
framework. The only difference from the original PSO is the
velocity update equation. The CLPSO is also simple and easy
to implement like the original PSO.
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