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Abstract—Achieving balance between convergence and diver-
sity is a key issue in evolutionary multiobjective optimization.
Most existing methodologies, which have demonstrated their niche
on various practical problems involving two and three objectives,
face significant challenges in many-objective optimization. This
paper suggests a unified paradigm, which combines dominance-
and decomposition-based approaches, for many-objective opti-
mization. Our major purpose is to exploit the merits of both
dominance- and decomposition-based approaches to balance the
convergence and diversity of the evolutionary process. The per-
formance of our proposed method is validated and compared with
four state-of-the-art algorithms on a number of unconstrained
benchmark problems with up to 15 objectives. Empirical results
fully demonstrate the superiority of our proposed method on all
considered test instances. In addition, we extend this method to
solve constrained problems having a large number of objectives.
Compared to two other recently proposed constrained optimiz-
ers, our proposed method shows highly competitive performance
on all the constrained optimization problems.

Index Terms—Constrained optimization, decomposition, evolu-
tionary computation, many-objective optimization, Pareto opti-
mality, steady state.

I. INTRODUCTION

AMULTIOBJECTIVE optimization problem (MOP) can
be stated as
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minimize F(x) = ( f1(x), · · · , fm(x))T

subject to gj(x) ≥ 0, j = 1, · · · , J
hk(x) = 0, k = 1, · · · , K
x ∈ �

(1)

where J and K are the numbers of inequality and equal-
ity constraints, respectively. � = ∏n

i=1 [ai, bi] ⊆ R
n is

the decision (variable) space, x = (x1, . . . , xn)
T ∈ � is a

candidate solution. F : � → R
m constitutes m conflicting

objective functions, and R
m is called the objective space.

The attainable objective set is defined as � = {F(x)|x ∈
�, gj(x) ≥ 0, hk(x) = 0}, for j ∈ {1, . . . , J} and
k ∈ {1, . . . , K}.

x1 is said to dominate x2 (denoted as x1 � x2) if and only if
fi(x1) ≤ fi(x2) for every i ∈ {1, . . . , m} and fj(x1) < fj(x2) for
at least one index j ∈ {1, . . . , m}. A solution x∗ is Pareto-
optimal to (1) if there is no other solution x ∈ � such
that x � x∗. F(x∗) is then called a Pareto-optimal (objective)
vector. In other words, any improvement of a Pareto-optimal
vector in one objective must lead to a deterioration in at least
one other objective. The set of all Pareto-optimal solutions is
called the Pareto-optimal set (PS). Accordingly, the set of all
Pareto-optimal vectors, EF = {F(x) ∈ R

m|x ∈ PS}, is called
the efficient front (EF) [1].

Since the early 1990s, much effort has been devoted to
developing evolutionary multiobjective optimization (EMO)
algorithms for problems with two and three objectives [2]–[9].
However, many real-world applications, such as water
distribution systems [10], automotive engine calibration
problems [11], and land use management problems [12], often
involve four or more objectives. Therefore, it is not surpris-
ing that handling a large number of objectives, also known
as many-objective optimization, has been one of the major
research topics in the EMO community during recent years.

Without any further information from a decision maker,
EMO algorithms are usually designed to meet two common
but often conflicting goals: minimizing the distances between
solutions and the EF (i.e., convergence) and maximizing the
spread of solutions along the EF (i.e., diversity). Balancing
convergence and diversity becomes much more difficult in
many-objective optimization. Generally speaking, challenges
brought by a large number of objectives include the fol-
lowing six aspects. First and foremost, with the increasing
number of objectives, almost all solutions in a population
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become nondominated with one another [13]. This aspect
severely deteriorates the selection pressure toward the EF
and considerably slows down the evolutionary process, since
most elite-preserving mechanisms of EMO algorithms employ
Pareto dominance as a major selection criteria. Second, with
the increase of the objective space in size, the conflict between
convergence and diversity becomes aggravated [14]. Since
most of the current diversity management operators (see [15],
crowding distance [16], and kth nearest distance [17]) prefer
selecting the dominance resistant solutions [14], they cannot
strengthen the selection pressure toward the EF, and may even
impede the evolutionary process to a certain extent. Third,
due to the computational efficiency consideration, the popula-
tion size used in EMO algorithms cannot be arbitrarily large.
However, in a high-dimensional objective space, limited num-
ber of solutions are likely to be far away from each other. This
might lead to the inefficiency for offspring generation, since
the reproduction operation usually produces an offspring far
away from its parents in a high-dimensional space. Next, it is
well-known that the computational complexity for calculating
some performance metrics, such as hypervolume [18], grows
exponentially with the increasing number of objectives [19].
Finally, the last two challenges are the representation and visu-
alization of trade-off surface. Although these two issues might
not directly affect the evolutionary process, they cause severe
difficulties for decision making.

Confronted by the mentioned difficulties, the performance
of most current EMO algorithms, which have already demon-
strated their capabilities for two- and three-objective prob-
lems, deteriorate significantly when more than three objec-
tives are involved [20]. The Pareto-based EMO approach
(see [16], [17], [21]), whose basic idea is to compare solutions
according to Pareto dominance relation and density estimation,
is the first to bear the brunt. Due to the first challenge men-
tioned above, the large proportion of nondominated solutions
makes the primary selection criterion, i.e., Pareto dominance
relation, fail to distinguish solutions. Instead, also known as
active diversity promotion [14], the secondary selection cri-
terion, i.e., density estimation, takes control of both mating
and environmental selection. However, according to the afore-
mentioned second challenge, the active diversity promotion
leads to a detrimental effect on the convergence toward the
EF [13], [22], [23], due to the presence of dominance resistant
solutions [24]. During the last decades, indicator-based EMO
approach (see [25]–[27]) was regarded as a promising method
for many-objective optimization. Different from the Pareto-
based approach, it integrates the convergence and diversity
into a single indicator, such as hypervolume [18], to guide the
selection process. This characteristic waives the first two chal-
lenges mentioned above. But unfortunately, the exponentially
increased computation cost of hypervolume calculation [19],
as the mentioned in the fourth challenge, severely impedes
further developments of indicator-based EMO approaches for
many-objective optimization. Although some efforts have been
made to remedy the computational issue, (see [28]–[30]), it is
still far from widely applicable in practice.

In general, there are five viable ways to alleviate the chal-
lenges posed in evolutionary many-objective optimization.

The first and most straightforward one is the development
of new dominance relations that can increase the selection
pressure toward the EF. A large amount of studies, in evo-
lutionary many-objective optimization, have been done along
this direction, such as ε-dominance [31], dominance area con-
trol [32], grid-dominance [33], preference order ranking [34],
k-optimality [35], and fuzzy-based Pareto optimality [36]. In
addition, some nonPareto-based approaches, such as average
rank [37], L-optimality [38], and rank-dominance [39], have
also demonstrated their abilities for handling problems with a
large number of objectives.

Another avenue is the decomposition-based method, which
decomposes a MOP, in question, into a set of subproblems and
optimizes them in a collaborative manner. Note that the decom-
position concept is so general that either aggregation functions
or simpler MOPs [40] can be used to form subproblems. Since
the weight vectors of these subproblems are widely spread, the
obtained solutions are expected to have a wide distribution over
the EF. MOEA/D, proposed in [41], is a representative of this
sort. In MOEA/D, each solution is associated with a subproblem,
and each subproblem is optimized by using information from its
neighborhoods. During the past few years, MOEA/D, as a major
framework to design EMO algorithms, has spawned a large
amount of research works, e.g., introducing adaptive mecha-
nism in reproduction [42], hybridizing with local search [43],
and incorporating stable matching in selection [44]. However,
the effectiveness and usefulness of these algorithms for many-
objective optimization is yet to be validated. Most existing
studies of MOEA/D in many-objective scenario mainly con-
centrate on investigations of its search behavior (see [45]–[49]).
It is worth noting that the cellular multiobjective genetic algo-
rithm (C-MOGA), proposed in [50], can also be regarded as
an early version of MOEA/D. It specifies several directions for
genetic search and uses the same neighborhood concept for
mating restriction. C-MOGA differs from MOEA/D in selecting
solutions for offspring reproduction and updating the internal
population, and it has to insert solutions from its external pop-
ulation to its internal population at each generation for dealing
with nonconvex EFs [41]. Furthermore, the recently proposed
NSGA-III [49] also employs a decomposition-based idea to
maintain population diversity, while the convergence is still
controlled by Pareto dominance.

The third way is to rescue the loss of selection pressure by
improving the diversity management mechanism. Although it
sounds quite intuitive, surprisingly, not much work have been
done along this direction. In [51], a diversity management
operator is proposed to control the activation and deactiva-
tion of the crowding measure in NSGA-II [16]. In [22], a
significant improvement on the convergence performance has
been witnessed by a simple modification on the assignment of
crowding distance in NSGA-II. In [52], a shift-based density
estimation strategy is proposed to assign high density values to
the poorly converged solutions by putting them into crowded
areas. To a certain extent, the essence of the niche-preservation
operation of NSGA-III can also be regarded as an improved
diversity management scheme that remedies the loss of selec-
tion pressure caused by the mushrooming of nondominated
solutions in a high-dimensional objective space.
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The last two feasible remedies are multicriteria decision
making-based EMO methodologies and objective reduction.
The former one concerns finding a preferred subset of
solutions from the whole PS (see [53]–[55]). Therefore,
the aforementioned difficulties can be alleviated due to the
shrunk search space. Based on the assumption of the exis-
tence of redundant objectives in a many-objective optimization
problem, the latter one considers employing some dimen-
sionality reduction techniques, such as principal component
analysis [56], to identify the embedded EF in the ambi-
ent objective space. As a consequence, the classic EMO
methodologies, proposed for two- and three-objective cases,
can be readily applicable for this reduced objective space.

As highlighted in [57], research on evolutionary
many-objective optimization is still in its infancy. Great
improvements are still needed before EMO algorithms can
be considered as an effective tool for many-objective opti-
mization as in two- and three-objective cases. Recent studies
in [58] have shown that the representatives of Pareto- and
decomposition-based EMO approaches, i.e., NSGA-II and
MOEA/D, respectively, are suitable for different problems.
This observation greatly motivates us to exploit the merits
from both approaches for further improvements and wider
applicabilities. In this paper, we propose a unified paradigm,
termed MOEA/DD, which combines the dominance- and
decomposition-based approaches, to tackle the first three
challenges posed in many-objective optimization. The major
contributions of this paper are summarized as follows.

1) We present a systematic approach to generate widely
spread weight vectors in a high-dimensional objective
space. Each weight vector not only defines a subproblem,
but also specifies a unique subregion in the objective space.

2) To tackle the aforementioned challenge for diversity
management in a high-dimensional objective space, the
density of the population is estimated by the local niche
count of a subregion.

3) Consider the aforementioned third challenge, a mating
restriction scheme is proposed to make most use of the
mating parents chosen from neighboring subregions.

4) Inherit the merit of steady-state selection scheme of
MOEA/D, each time, only one offspring is considered
for updating the population.

5) To tackle the first challenge mentioned, the update of
population is conducted in a hierarchical manner, which
depends on Pareto dominance, local density estimation,
and scalarization functions, sequentially. Moreover, in
order to further improve the population diversity, a sec-
ond chance is provided to the worst solution in the last
nondomination level, in case it is associated with an
isolated subregion.

6) The proposed MOEA/DD is further extended for con-
strained optimization problems having a large number
of objectives.

The remainder of this paper is organized as follows.
Section II provides some background knowledge of this paper.
Section III is devoted to the description of our proposed algo-
rithm for many-objective optimization. Experimental settings
are provided in Section IV, and comprehensive experiments

Fig. 1. Illustration of PBI approach.

are conducted and analyzed in Section V. Section VI presents
an extension of MOEA/DD for handling constraints in a
high-dimensional objective space. Finally, Section VII con-
cludes this paper and threads some future research issues.

II. PRELIMINARIES

In this section, we first introduce some basic knowledge
about the decomposition method used in MOEA/DD. Then,
we briefly introduce the general mechanisms of MOEA/D and
NSGA-III, which are related to this paper.

A. Decomposition Methods

In principle, any approach in classic multiobjective
optimization [1] can be applied in our algorithm to decom-
pose a MOP, in question, into a set of scalar optimiza-
tion subproblems. Among them, the most popular ones are
weighted sum, weighted Tchebycheff, and boundary intersec-
tion approaches [1]. In this paper, we use the penalty-based
boundary intersection (PBI) approach [41], due to its promis-
ing performance for many-objective optimization reported
in [49]. This approach is a variant of the normal-boundary
intersection method [59], where equality constraint is han-
dled by a penalty function. More formally, the optimization
problem of PBI approach is defined as

minimize gpbi(x|w, z∗) = d1 + θd2
subject to x ∈ �

(2)

where

d1 =
∥
∥(F(x)− z∗)T w

∥
∥

‖w‖ (3)

d2 =
∥
∥
∥
∥F(x)−

(

z∗ + d1
w
‖w‖

)∥
∥
∥
∥ (4)

z∗ = (z∗1, . . . , z∗m)T is the ideal objective vector with z∗i <

min
x∈� fi(x), i ∈ {1, . . . , m}, θ ≥ 0 is a user-defined penalty

parameter. Fig. 1 presents a simple example to illustrate
d1 and d2 of a solution x with regard to a weight vector
w = (0.5, 0.5)T . In the PBI approach, d1 is used to eval-
uate the convergence of x toward the EF and d2 is a kind
of measure for population diversity. By adding the value of
d2 multiplied by θ to d1, gpbi(x|w, z∗) plays as a composite
measure of x for both convergence and diversity. The balance
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Fig. 2. Illustration of contours of PBI function with different settings of θ and w.

between d1 and d2 is controlled by the parameter θ , and the
goal of PBI approach is to push F(x) as low as possible so
that it can reach the boundary of �.

Fig. 2 presents contours of the PBI function in three
2-D cases, with θ = 0.0, θ = 1.0, and θ = 2.0, respectively,
for weight vector w = (0.5, 0.5)T . From this figure, we
observe that different settings of θ lead to distinct search
behaviors of the PBI approach. In particular, the contours
of PBI approach are the same as those of weighted sum
approach when θ = 0.0. As reported in [48], the performance
of MOEA/D with PBI (θ = 0.1) is similar to MOEA/D with
weighted sum on multiobjective knapsack problems. When
θ = 1.0, the contours of PBI are the same as those of the
weighted Tchebycheff. Moreover, the contours in this case
have the same shape as a dominating region of a point. This
implies that MOEA/D with PBI (θ = 1.0) should have a sim-
ilar search behavior as MOEA/D with weighted Tchebycheff.
In this paper, we set θ = 5.0 for empirical studies, in
view of its reportedly promising results on tackling various
continuous MOPs in [41] and [49]. It is worth noting that
MOEA/D with weighted sum and PBI with θ = 0.1 out-
perform MOEA/D with weighted Tchebycheff and PBI with
θ = 5.0 on multiobjective knapsack problems [48].

B. MOEA/D

As a representative of the decomposition-based method, the
basic idea of MOEA/D is to decompose a MOP into a number
of single objective optimization subproblems through aggre-
gation functions and optimizes them simultaneously. Since the
optimal solution of each subproblem is proved to be Pareto-
optimal to the MOP in question, the collection of optimal
solutions can be treated as a good EF approximation. There are
two major features of MOEA/D: one is local mating, the other
is local replacement. In particular, local mating means that the
mating parents are usually selected from some neighboring
weight vectors. Then, an offspring solution is generated by
applying crossover and mutation over these selected parents.
Local replacement means that an offspring is usually com-
pared with solutions among some neighboring weight vectors.
However, as discussed in [60], with a certain probability, it
is helpful for the population diversity to conduct mating and
replacement from all weight vectors. A parent solution can be
replaced by an offspring only when it has a better aggregation
function value.

Algorithm 1: General Framework of MOEA/DD
Output: population P

1 [P, W, E]←INITIALIZATION() ; // P is the
parent population, W is the weight
vector set and E is the neighborhood
index set

2 while termination criterion is not fulfilled do
3 for i← 1 to N do
4 P←MATING_SELECTION(E(i), P);
5 S←VARIATION(P);
6 foreach xc ∈ S do // xc is an offspring
7 P←UPDATE_POPULATION(P, xc)

8 end
9 end

10 end
11 return P

C. NSGA-III

It is a recently proposed algorithm for many-objective opti-
mization. Similar to the idea of weight vector generation in
MOEA/D, NSGA-III specifies a set of reference points that
evenly spread over the objective space. In each generation,
the objective function values of each solution is normalized
to [0, 1]. Each solution is associated with a reference point
based on its perpendicular distance to the reference line. After
the generation of a population of offspring solutions, they are
combined with their parents to form a hybrid population. Then,
a nondominated sorting procedure is applied to divide the
hybrid population into several nondomination levels. Solutions
in the first level have the highest priority to be selected as the
next parents, so on and so forth. Solutions in the last accept-
able level are selected based on a niche-preservation operator,
where solutions associated with a less crowded reference line
have a larger chance to be selected.

III. PROPOSED ALGORITHM: MOEA/DD

A. Framework of Proposed Algorithm

Algorithm 1 presents the general framework of MOEA/DD.
First, the initialization procedure generates N initial solutions
and N weight vectors. Within the main while-loop, in case the
termination criteria are not met, for each weight vector, the
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Algorithm 2: Initialization Procedure (INITIALIZATION)
Output: parent population P, weight vector set W,

neighborhood set of weight vectors E
1 Generate an initial parent population P = {x1, . . . , xN} by

random sampling from �;
2 if m < 7 then
3 Use Das and Dennis’s method to generate

N = (H+m−1
m−1

)
weight vectors W = {w1, . . . , wN};

4 else
5 Use Das and Dennis’s method to generate

N1 =
(H1+m−1

m−1

)
weight vectors B = {b1, . . . , bN1} and

N2 =
(H2+m−1

m−1

)
weight vectors I = {i1, . . . , iN2},

where N1 + N2 = N;
6 for k← 1 to N2 do
7 for j← 1 to m do
8 ikj = 1−τ

m + τ × ikj ;
9 end

10 end
11 Wm×N ← Bm×N1 ∪ Im×N2 ;
12 end
13 for i← 1 to N do
14 E(i) = {i1, . . . , iT} where wi1 , . . . , wiT are the T

closest weight vectors to wi;
15 end
16 Use the nondominated sorting method to divide P into

several nondomination levels F1, F2, . . . , Fl;
17 Associate each member in P with a unique subregion;
18 return P, W, E

mating selection procedure chooses some parents for offspring
generation. Then, the offspring is used to update the parent
population according to some elite-preserving mechanism. In
the following paragraphs, the implementation details of each
component in MOEA/DD will be explained step-by-step.

B. Initialization Procedure

The initialization procedure of MOEA/DD (line 1 of
Algorithm 1), whose pseudo-code is given in Algorithm 2,
contains three main aspects: the initialization of parent pop-
ulation P, the identification of nondomination level structure
of P, the generation of weight vectors, and the assignment
of neighborhood. To be specific, the initial parent population
P is randomly sampled from � via a uniform distribution.
A set of weight vectors W = {w1, . . . , wN} is generated
by a systematic approach developed from Das and Dennis’s
method [59]. In this approach, weight vectors are sampled
from a unit simplex. N = (H+m−1

m−1

)
points, with a uniform

spacing δ = 1/H, where H > 0 is the number of divisions
considered along each objective coordinate, are sampled on
the simplex for any number of objectives. Fig. 3 gives a sim-
ple example to illustrate the Das and Dennis’s weight vector
generation method.

As discussed in [49], in order to have intermediate weight
vectors within the simplex, we should set H ≥ m. However,
in a high-dimensional objective space, we will have a large

Fig. 3. Structured weight vector w = (w1, w2, w3)T generation process with

δ = 0.25, i.e., H = 4 in 3-D space [59].
(4+3−1

3−1
) = 15 weight vectors are

sampled from an unit simplex.

amount of weight vectors even if H = m (e.g., for an

seven-objective case, H = 7 will results in
(7+7−1

7−1

) = 1716
weight vectors). This obviously aggravates the computational
burden of an EMO algorithm. On the other hand, if we sim-
ply remedy this issue by lowering H (e.g., set H < m), it will
make all weight vectors sparsely lie along the boundary of the
simplex. This is apparently harmful to the population diversity.
To avoid such situation, we present a two-layer weight vec-
tor generation method. At first, the sets of weight vectors in
the boundary and inside layers (denoted as B = {b1, . . . , bN1}
and I = {i1, . . . , iN2}, respectively, where N1 + N2 = N) are
initialized according to the Das and Dennis’s method, with
different H settings. Then, the coordinates of weight vectors
in the inside layer are shrunk by a coordinate transforma-
tion. Specifically, as for a weight vector in the inside layer
ik = (ik1, . . . , ikm)T , k ∈ {1, . . . , N2}, its jth component is
reevaluated as

ikj =
1− τ

m
+ τ × ikj (5)

where j ∈ {1, . . . , m} and τ ∈ [0, 1] is a shrinkage factor (here
we set τ = 0.5 without loss of generality). At last, B and I
are combined to form the final weight vector set W. Fig. 4
presents a simple example to illustrate our two-layer weight
vector generation method.

Each weight vector wi = (wi
1, · · · , wi

m)T , i ∈ {1, . . . , N},
specifies a unique subregion, denoted as �i, in the objective
space, where �i is defined as

�i = {F(x) ∈ R
m|〈F(x), wi〉 ≤ 〈F(x), wj〉} (6)

where j ∈ {1, . . . , N}, x ∈ � and 〈F(x), wj〉 is the acute angle
between F(x) and wj. It is worth noting that a recently pro-
posed EMO algorithm MOEA/D-M2M [40] also employs a
similar method to divide the objective space. However, its
idea is in essence different from our method. To be specific,
in MOEA/DD, the assignment of subregions is to facilitate
the local density estimation which will be illustrated in detail
later; while, in MOEA/D-M2M, different weight vectors are
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Fig. 4. Example our two-layer weight vector generation method, with H1 = 2
for the boundary layer and H2 = 1 for the inside layer.

used to specify different subpopulations for approximating a
small segment of the EF.

For each weight vector wi, i ∈ {1, . . . , N}, its neighborhood
consists of T closest weight vectors evaluated by Euclidean
distances. Afterwards, solutions in P are divided into different
nondomination levels (i.e., F1, . . . , Fl, where l ≤ N) by using
the fast nondominated sorting method suggested in [16]. At
last, each member of P is initially associated with a unique
subregion in a random manner.

C. Reproduction Procedure

Reproduction procedure (lines 4 and 5 of Algorithm 1), is
to generate offspring solutions to update the parent popula-
tion. It contains two steps: 1) mating selection, which chooses
some mating parents for offspring generation and 2) variation
operation, which generates new candidate solutions based on
those selected mating parents.

Considering the third challenge posed in Section I, it is
desirable that the mating parents should be chosen from a
neighborhood as much as possible. In MOEA/DD, each solu-
tion is associated with a subregion, uniquely specified by a
weight vector; and each weight vector (or subregion) has been
assigned with a neighborhood based on the Euclidean distance.
Thus, for the current weight vector, we can easily choose
neighboring solutions from its neighboring subregions. In case
no associated solution exists in the selected subregions, mat-
ing parents are randomly chosen from the whole population.
Moreover, in order to enhance the exploration ability [60], we
also allow the mating parents to be selected from the whole
population with a low probability 1 − δ, where δ ∈ [0, 1].
The pseudo-code of the mating selection procedure is given
in Algorithm 3.

As for variation operation, in principle, any genetic operator
can serve this purpose. In this paper, we use the simulated
binary crossover (SBX) [61] and polynomial mutation [62]
as in [49].

D. Update Procedure

After the generation of offspring solutions, we use them
to update the parent population P. The pseudo-code of this

Algorithm 3: Mating Selection (MATING_SELECTION)
Input: neighborhood set of the current weight vector

E(i), parent population P
Output: mating parent set P

1 if rnd < δ then
2 Randomly choose k indices from E(i);
3 if no solution in the selected subregions then
4 Randomly choose k solutions from P to form P;
5 else
6 Randomly choose k solutions from the selected

subregions to form P;
7 end
8 else
9 Randomly choose k solutions from P to form P;

10 end
11 return P

update procedure is presented in Algorithm 4. It is worth
noting that we only consider one offspring each time. That
is to say, multiple rounds of this update procedure will be
implemented if more than one offspring solution have been
generated. First and foremost, we identify the associated sub-
region of the offspring solution xc (line 1 of Algorithm 4).
Then, xc is combined with P to form a hybrid population
P′ (line 2 of Algorithm 4). Afterwards, we need to iden-
tify the nondomination level structure of P′. In traditional
steady-state methodologies (see [63]–[65]), the nondomina-
tion level structure of a population is usually obtained by
conducting nondominated sorting from scratch. However, as
discussed in [66], the nondomination level structure of P has
already been obtained in the previous generation. Thus, it
always happens that not all nondomination levels need to be
changed, when introducing a new member to P. For example,
in Fig. 5(a), no solution needs to change its nondomination
level; while in Fig. 5(b), only some solutions change their
nondomination levels. Therefore, applying the nondominated
sorting over P′ from scratch, each time, obviously incurs
many unnecessary dominance comparisons. It will be even
more time-consuming when the number of objectives and the
population size become large. In view of this consideration,
we use the efficient method1 proposed in [66] to update the
nondomination level structure of P′. Analogously, after the
update procedure, where an inferior solution is eliminated
from P′, we also use the method suggested in [66] to update
the nondomination level structure of the newly formed P.

Generally speaking, we might have the one of the following
two scenarios when updating P.

1) There is Only One Nondomination Level (i.e., l = 1):
In this case, all members in P′ are nondominated from each
other. Therefore, we have to seek other measures, such as
density estimation and scalarization function, to distinguish
solutions. Since each solution is associated with a subregion,
we can estimate the density (or niche count) of a subregion
by counting the number of solutions associated with it. As

1Due to the page limit, this nondomination level update method is not
illustrated in this paper, interested readers are recommended to [66] for details.
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(a) (b)

Fig. 5. Illustration of updating nondomination level structure when introducing a new offspring solution. (a) Nondomination level structure keep unchanged.
(b) Nondomination level structure has been changed.

shown in Algorithm 5, we identify the most crowded subre-
gion (denoted as �h) that has the largest niche count. In case
more than one subregion has the same largest niche count, we
choose the one with the largest sum of PBI values

h = argmax
i∈S

∑

x∈�i

gpbi (x|wi, z∗
)

(7)

where S is the set of subregion indices that have the same
largest niche count. Finally, we identify the worst solution
(denoted as x′) in �h that has the largest PBI value

x′ = argmax
x∈�h

gpbi
(

x|wh, z∗
)
. (8)

Thereafter, x′ is eliminated from P′.
2) There Are More Than One Nondomination Levels (i.e.,

l > 1): Since only one solution needs to be eliminated from
P′, we start the decision process from the last nondomination
level Fl. There exists the following two cases.

1) |Fl| = 1, i.e., Fl contains only one solution (denoted
as xl). First of all, we investigate the density of the
subregion (denoted as �l) associated with xl.

a) If more than one solution (including xl) have been
associated with �l, xl is eliminated from P′ (line
10 of Algorithm 4). This is because xl belongs to
Fl and �l contains some other better solutions in
term of convergence. Therefore, xl cannot provide
any further useful information. Fig. 6 presents an
example to illustrate this issue.

b) Otherwise, �l is regarded as an isolated subregion,
which means that �l might be an unexploited area
in the objective space. In this case, xl is very impor-
tant for population diversity and it should survive
to the next round without reservation. Instead, we
identify the most crowded subregion �h [tie is
broken according to (7)]. Then, we find out the
solutions (denoted as a set R) in �h that belong
to the current worst nondomination level. Finally,
the worst solution x′ ∈ R, which has the largest
PBI value [according to (9)], is eliminated from P′
(lines 12 and 13 of Algorithm 4). Fig. 7 presents
an example to illustrate this issue

x′ = argmax
x∈R

gpbi
(

x|wh, z∗
)
. (9)

Fig. 6. F will be eliminated as it belongs to the last nondomination level
and there is another better solution B associated with F’s subregion.

Fig. 7. Although F belongs to the worst nondomination level, it is associated
with an isolated subregion. This indicates that F is important for population
diversity and it should be preserved without reservation. Instead, we eliminate
the worst solution D associated with the most crowded subregion.

2) |Fl| > 1, i.e., Fl contains more than one solution. We
at first identify the most crowded subregion �h [tie is
broken according to (7)] associated with those solutions
in Fl (line 16 of Algorithm 4).

a) If more than one solution is associated with �h,
we eliminate the worst solution x′ ∈ �h, which
owns the largest PBI value, according to (8), from
P′ (lines 18 and 19 of Algorithm 4).
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Algorithm 4: Update Procedure (UPDATE_POPULATION)
Input: parent population P, offspring solution xc

Output: parent population P
1 Find the subregion associated with xc according to (6);
2 P′ ← P

⋃{xc};
3 Use the method suggested in [66] to update the

nondomination level structure of P′;
4 if l = 1 then // All solutions in P′ are
nondominated from each other

5 x′ ←LOCATE_WORST(P′);
6 P← P′ \ {x′};
7 else
8 if |Fl| = 1 then // Fl has only one

solution xl

9 if |�l| > 1 then // �l is the
associated subregion of xl

10 P← P′ \ {xl};
11 else // |�l| = 1
12 x′ ←LOCATE_WORST(P′);
13 P← P′ \ {x′};
14 end
15 else
16 Identify the most crowded subregion �h

associated with those solutions in Fl;
17 if |�h| > 1 then
18 Find the worst solution

x′ = argmaxx∈�h gpbi(x|wh, z∗);
19 P← P′ \ {x′};
20 else // |�h| = 1
21 x′ ←LOCATE_WORST(P′);
22 P← P′ \ {x′};
23 end
24 end
25 end
26 Use the method suggested in [66] to update the

nondomination level structure of P;
27 return P

b) Otherwise, if the niche count of �h is one, it
means that every member in Fl is associated with
an isolated subregion. As discussed before, such
solutions should be preserved for the next round
without reservation. Similar to the operations done
in case 1) b), we eliminate the worst solution x′
from P′ (lines 21 and 22 of Algorithm 4).

After eliminating an inferior solution from P′, we apply the
method suggested in [66] to update the nondomination level
structure of the newly formed P.

E. Discussion

After describing the technical details of MOEA/DD,
this section discusses the similarities and differences of
MOEA/DD, MOEA/D, and NSGA-III.

1) Similarities Between MOEA/DD and MOEA/D:
a) Both of them employ a set of weight vectors to

guide the selection procedure.

Algorithm 5: Find the Worst Solution (LOCATE_WORST)

Input: hybrid population P′
Output: the worst solution x′

1 Identify the most crowded subregion �h in P′, tie is
broken as h = argmaxi∈S

∑
x∈�i gpbi(x|wi, z∗);

2 In �h, find the solution set R that belong to the worst
nondomination level;

3 Find the worst solution x′ = argmaxx∈R gpbi(x|wh, z∗);
4 return x′

b) Both of them rely on a neighborhood concept.
c) Both of them apply the scalarization function to

measure the fitness value of a solution.
2) Similarities Between MOEA/DD and NSGA-III:

a) Both of them employ a set of weight vectors (or
reference points) to guide the selection procedure.

b) In both algorithms, each solution is associated with
a weight vector (or reference point).

c) Both of them divide the population into sev-
eral nondomination levels according to the Pareto
dominance relation.

3) Differences Between MOEA/DD and MOEA/D:
a) MOEA/D abandons the Pareto dominance concept

in selection, while the quality of a solution is fully
determined by a predefined scalarization function.
As discussed in [58], NSGA-II and MOEA/D
are, respectively, suitable for different kinds of
problems. This observation motivates the combi-
nation of Pareto dominance and decomposition
approaches in MOEA/DD.

b) In MOEA/DD, each weight vector not only defines
a subproblem that can evaluate the fitness value of
a solution, but also specifies a subregion that can be
used to estimate the local density of a population.

c) As discussed in [44], the update/selection proce-
dure of MOEA/D is a one-sided selection, where
only subproblems have the rights to select their pre-
ferred solutions. In contrast, by associating with a
subregion, each solution in MOEA/DD also has the
right to select its preferred subproblem (i.e., sub-
region). After that, a subproblem can only choose
its preferred solutions from its associated ones.

d) In MOEA/DD, since a solution in the last nondom-
ination level will be preserved without reservation
if it is associated with an isolated subregion, the
convergence speed of MOEA/DD might be slower
than that of MOEA/D. However, this mechanism
benefits the diversity preservation, which is very
important for many-objective optimization.

e) In MOEA/DD, the neighborhood concept is only
used for mating restriction, while it is used for both
mating and update procedures in MOEA/D.

4) Differences Between MOEA/DD and NSGA-III:
a) Although MOEA/DD divides the population into

several nondomination levels, its selection proce-
dure does not fully obey the decision made by
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TABLE I
CHARACTERISTICS OF TEST INSTANCES

Pareto dominance relation. In particular, a solution,
associated with an isolated subregion, will survives
to the next iteration even if it belongs to the last
nondomination level. In contrast, considering the
example discussed in Fig. 7, point F cannot sur-
vive to the next generation in NSGA-III. However,
the elimination of F obviously results in a severe
loss of population diversity.

b) In MOEA/DD, each weight vector not only specify
a unique subregion in the objective space, but also
defines a subproblem which can be used to evaluate
the fitness value of a solution.

c) MOEA/DD uses a steady-state selection scheme,
while the selection procedure of NSGA-III is a
generational scheme.

IV. EXPERIMENTAL SETUP

This section devotes to the experimental design for inves-
tigating the performance of MOEA/DD. At first, we describe
the benchmark problems used in our empirical studies. Then,
we introduce the performance metrics used for evaluating the
performance of an EMO algorithm. Afterwards, we briefly
describe the EMO algorithms used for validating our proposed
MOEA/DD. Finally, we provide the general parameter settings
in our empirical studies.

A. Benchmark Problems

DTLZ1 to DTLZ4 from the DTLZ test suite [67] and WFG1
to WFG9 from WFG test suite [68] are chosen for our empiri-
cal studies. For each DTLZ instance, the number of objectives
varies from 3 to 15, i.e., m ∈ {3, 5, 8, 10, 15}. For each WFG
instance, the number of objectives is set as m ∈ {3, 5, 8, 10}.
According to the recommendations in [67], the number of
decision variables is set as n = m + r − 1 for DTLZ test
instances, where r = 5 for DTLZ1 and r = 10 for DTLZ2,
DTLZ3 and DTLZ4. As suggested in [68], the number of deci-
sion variables is set as n = k + l, where the position-related
variable k = 2 × (m − 1) and the distance-related variable
l = 20 for WFG test instances. The characteristics of all test
instances are summarized in Table I.

B. Performance Metrics

In our empirical studies, we consider the following
two widely used performance metrics. Both of them can

simultaneously measure the convergence and diversity of
obtained solutions.

1) Inverted Generational Distance (IGD) Metric [69]: Let
P∗ be a set of points uniformly sampled over the true EF, and
S be the set of solutions obtained by an EMO algorithm. The
IGD value of S is computed as

IGD(S, P∗) =
∑

x∗∈P∗ dist(x∗, S)

|P∗| (10)

where dist(x∗, S) is the Euclidean distance between a point
x∗ ∈ P∗ and its nearest neighbor in S, and |P∗| is the car-
dinality of P∗. The lower is the IGD value, the better is the
quality of S for approximating the whole EF.

Since the analytical forms of the exact Pareto-optimal sur-
faces of DTLZ1 to DTLZ4 are known a priori, and a set of
evenly spread weight vectors has been supplied in MOEA/DD,
we can exactly locate the intersecting points of weight vectors
and the Pareto-optimal surface. And these intersecting points
are the targeted Pareto-optimal points, which finally constitute
P∗, on the true EF. To be specific, as for DTLZ1, the objective
functions of a Pareto-optimal solution x∗ satisfy

m∑

i=1

fi(x∗) = 0.5. (11)

Given a line connecting the origin and a weight vector
w = (w1, · · · , wm)T , its intersecting point with the
Pareto-optimal surface satisfies

fi(x∗)
wi
= c (12)

where i ∈ {1, . . . , m} and c > 0 is a constant. Put (12)
into (11), we have

c = 0.5× 1
∑m

i=1 wi
. (13)

Finally, we have

fi(x∗) = 0.5× wi
∑m

j=1 wj
(14)

where i ∈ {1, . . . , m}.
As for DTLZ2, DTLZ3, and DTLZ4, the objective functions

of a Pareto-optimal solution x∗ satisfy
m∑

i=1

f 2
i (x∗) = 1. (15)

Given a line connecting the origin and a weight vector w =
(w1, . . . , wm)T , its intersecting point with the Pareto-optimal
surface satisfies (12). Put (12) into (15), we have

c = 1
√∑m

i=1 w2
i

. (16)

Finally, we have

fi(x∗) = wi
√∑m

j=1 w2
j

(17)

where i ∈ {1, . . . , m}.
According to (14) and (17), we can obtain the corresponding

targeted Pareto-optimal point for each weight vector. Fig. 8
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Fig. 8. Simple illustration of finding five targeted Pareto-optimal points on
the EFs of DTLZ1 and DTLZ2 to DTLZ4.

TABLE II
SETTINGS OF REFERENCE POINTS

gives an intuitive illustration of finding five targeted Pareto-
optimal points on the EFs of DTLZ1 and DTLZ2 to DTLZ4,
respectively, in a 2-D space.

2) Hypervolume (HV) Metric [18]: Let zr = (zr
1, . . . , zr

m)T

be a reference point in the objective space that is dominated
by all Pareto-optimal objective vectors. HV metric measures
the size of the objective space dominated by the solutions in
S and bounded by zr

HV(S) = VOL

(
⋃

x∈S

[
f1(x), zr

1

]× . . .
[
fm(x), zr

m

]
)

(18)

where VOL(·) indicates the Lebesgue measure. The larger is
the HV value, the better is the quality of S for approximating
the whole EF.

In our empirical studies, reference points are set accord-
ing to Table II. For 3- to 10-objective problems, we adopt
the recently proposed WFG algorithm [29] to calculate the
exact HV, whereas a Monte Carlo sampling [28] is applied to
approximate HV in 15-objective cases.2 Note that solutions,
dominated by a reference point, are discarded for HV calcula-
tion. The presented HV values in this paper are all normalized
to [0, 1] by dividing z = 	m

i=1zr
i .

C. EMO Algorithms for Comparisons

We consider four state-of-the-art EMO algorithms, includ-
ing NSGA-III, MOEA/D, GrEA [70], and HypE [28] for com-
parisons. Since the general ideas of MOEA/D and NSGA-III
have been introduced in Section II-B and II-C, respectively,
here we only present the general working principles of GrEA
and HypE in the following paragraphs.

1) GrEA: It is a many-objective optimizer developed under
the framework of NSGA-II, where the fitness assign-
ment, mating selection, and environmental selection

2The source code of WFG algorithm is downloaded from
http://www.wfg.csse.uwa.edu.au/hypervolume/. The source code of
Monte Carlo sampling to approximate HV values can be downloaded
from http://www.tik.ee.ethz.ch/sop/download/supplementary/hype/

TABLE III
NUMBER OF WEIGHT VECTORS AND POPULATION SIZE

TABLE IV
NUMBER OF GENERATIONS FOR DIFFERENT TEST INSTANCES

have been modified. In particular, to increase the selec-
tion pressure of Pareto dominance, grid dominance and
grid difference are introduced to distinguish solutions
in a grid environment. Moreover, grid ranking, grid
crowding distance, and grid coordinate point distance
are introduced for fitness assignment.

2) HypE: It is an indicator-based EMO algorithm designed
specifically for many-objective optimization. In order to
alleviate the high computation cost required for exact
HV calculation, Monte Carlo simulation is applied to
obtain an HV approximation. One other major idea of
HypE is to use the rankings of solutions induced by
HV values, instead of the actual HV values, in fit-
ness evaluation, mating selection, and environmental
selection.

D. General Parameter Settings

The five EMO algorithms considered in this paper have
several parameters, they are summarized as follows.

1) Settings for Reproduction Operations: The crossover
probability is pc = 1.0 and its distribution index is
ηc = 30. The mutation probability is pm = 1/n and
its distribution index is ηm = 20.

2) Population Size: The population size N and the number
of weight vectors for different number of objectives are
summarized in Table III.

3) Number of Runs and Stopping Condition: Each algo-
rithm is independently run 20 times on each test
instance. The stopping condition of an algorithm is a pre-
defined number of generations, summarized in Table IV.

4) Penalty Parameter in PBI: θ = 5.0.
5) Neighborhood Size: T = 20.
6) Probability Used to Select in the Neighborhood:

δ = 0.9.
7) Grid Division (div) in GrEA: the settings of div are

summarized in Table V.
8) Number of Points in Monte Carlo Sampling: it is set to

10 000 according to [28].
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TABLE V
SETTINGS OF GRID DIVISION div IN GREA

V. EMPIRICAL RESULTS AND DISCUSSION

A. Performance Comparisons on DTLZ Test Suite

Comparison results of MOEA/DD with other four EMO
algorithms in terms of IGD and HV values are presented in
Tables VI and VII, respectively. The best metric values are
highlighted in bold face with gray background. From these
empirical results, it is clear that MOEA/DD is the best opti-
mizer as it wins on almost all comparisons (234 out of 240 for
IGD and 235 out 240 for HV). In the following paragraphs,
we will explain these results instance by instance.

The EF of DTLZ1 is a linear hyper-plane, where the
objective functions of a Pareto-optimal solution x∗ satisfy:∑m

i=1 fi(x∗) = 0.5. The presence of 11r−1 local optima in the
search space leads to difficulties for converging to the global
EF. From the experimental results, we find that MOEA/DD
shows better performance than the other four EMO algorithms
in all 3- to 15-objective test instances. NSGA-III obtains bet-
ter IGD values than MOEA/D in almost all DTLZ1 instances,
except the five-objective case. HypE performs worst in all
DTLZ1 instances, where it obtains zero HV values in all
cases. Fig. 9 shows the parallel coordinates of nondominated
fronts obtained by MOEA/DD and the other four EMO algo-
rithms, respectively, for 15-objective DTLZ1 instance. This
particular run is associated with the median IGD value. From
these five plots, it is observed that the nondominated front
obtained by MOEA/DD is promising in both convergence
and diversity. Although the nondominated front obtained by
NSGA-III is also well converged, the solution distribution is
not as good as MOEA/DD. In contrast, the nondominated front
obtained by MOEA/D does not converge well on the 11th to
15th objectives. Both GrEA and HypE obtain zero HV val-
ues in the 15-objective DTLZ1 instance. This means that their
obtained solutions are fully dominated by the reference points.
Therefore, their obtained nondominated fronts are far away
from the EF.

DTLZ2 is a relatively simple test instance, where the
objective functions of a Pareto-optimal solution x∗ need to
satisfy:

∑m
i=1 f 2

i (x∗) = 1. The performance of MOEA/DD
and MOEA/D is comparable in this problem. In particular,
MOEA/DD shows better results than MOEA/D in 5-, 8-,
and 15-objective test instances, while MOEA/D obtains the
best IGD values in 3- and 10-objective cases. Moreover, it

is worth noting that both MOEA/DD and MOEA/D perform
consistently better than NSGA-III in all 3- to 15-objective
test instances. Comparing to DTLZ1 instances, the other two
EMO algorithms, i.e., GrEA and HypE, obtain much bet-
ter results this time. Fig. 10 presents the comparisons of the
nondominated fronts obtained by these five EMO algorithms,
respectively, for 15-objective DTLZ2 instance. It is clear that
solutions achieved by MOEA/DD and MOEA/D are similar in
terms of convergence and diversity. In contrast, the distribu-
tion of solutions achieved by NSGA-III is slightly worse than
the other two algorithms. Although the solutions obtained by
GrEA and HypE well converge to the EF, their distributions
are not satisfied enough.

The EF of DTLZ3 is the same as DTLZ2. But its search
space contains 3r − 1 local optima, which can make an EMO
algorithm get stuck at any local EF before converging to the
global EF. The performance of MOEA/DD is significantly
better than both NSGA-III and MOEA/D in all 3- to 15-
objective test instances. Fig. 11 plots the nondominated fronts
obtained by MOEA/DD and the other four EMO algorithms,
for 15-objective DTLZ3 instance. It is evident that only the
solutions obtained by MOEA/DD converge well to the global
EF. In contrast, the solutions obtained by MOEA/D concen-
trate on several parts of the EF. Similar to the observations in
15-objective DTLZ1, GrEA, and HypE have significant diffi-
culties in converging to the EF (their median HV values are
all zero in the 15-objective case).

DTLZ4 also has the identical EF shape as DTLZ2. However,
in order to investigate an EMO algorithm’s ability to main-
tain a good distribution of solutions, DTLZ4 introduces a
parametric variable mapping to the objective functions of
DTLZ2. This modification allows a biased density of points
away from fm(x) = 0. MOEA/D performs significantly worse
than MOEA/DD and NSGA-III on this problem. The IGD
values obtained by MOEA/D are two or three orders of magni-
tude larger than those obtained by MOEA/DD and NSGA-III.
Nevertheless, the best optimizer is still MOEA/DD, whose
IGD values are much smaller than those of NSGA-III. It is
also worth noting that the performance of MOEA/DD is rather
robust, as the best, median, and worst IGD values obtained by
MOEA/DD are in the same order of magnitude. Fig. 12 shows
the parallel coordinates of nondominated fronts obtained by
these five algorithms. These plots clearly demonstrate that
MOEA/DD is able to find a well converged and widely dis-
tributed set of points for DTLZ4 instance with 15 objectives. In
contrast, both NSGA-III and MOEA/D can only obtain sev-
eral parts of the true EF. Although the nondominated front
obtained by GrEA well converge to the EF, the solution dis-
tribution is rather messy. Solutions obtained by HypE seem to
concentrate on several extreme points.

B. Performance Comparisons on WFG Test Suite

By introducing a series of composable complexities (such
as nonseparability, multimodality, biased parameters, and
mixed EF geometries), the WFG test suite poses a signif-
icant challenge for algorithms to obtain a well-converged
and well-distributed solution set. Table VIII presents the
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TABLE VI
BEST, MEDIAN, AND WORST IGD VALUES OBTAINED BY MOEA/DD AND THE OTHER ALGORITHMS ON DTLZ1, DTLZ2, DTLZ3, AND DTLZ4

INSTANCES WITH DIFFERENT NUMBER OF OBJECTIVES. BEST PERFORMANCE IS HIGHLIGHTED IN BOLD FACE WITH GRAY BACKGROUND

(a) (b) (c) (d) (e)

Fig. 9. Parallel coordinates of nondominated fronts obtained by five algorithms on the 15-objective DTLZ1 instance. (a) MOEA/DD. (b) NSGA-III.
(c) MOEA/D. (d) GrEA. (e) HypE.

(a) (b) (c) (d) (e)

Fig. 10. Parallel coordinates of nondominated fronts obtained by five algorithms on the 15-objective DTLZ2 instance. (a) MOEA/DD. (b) NSGA-III.
(c) MOEA/D. (d) GrEA. (e) HypE.

comparison results of MOEA/DD with other three EMO
algorithms3 in terms of HV values. The best metric values

3Due the copyright police of NSGA-III, it cannot be used for empirical
studies in WFG test suite.

are highlighted in bold face with gray background. It is clear
that our proposed MOEA/DD shows the best performance in
most cases (294 out of 324 comparisons).

WFG1 investigates an EMO algorithm’s ability for cop-
ing with flat bias and mixed EF geometries (including both
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TABLE VII
BEST, MEDIAN, AND WORST HV VALUES OBTAINED BY MOEA/DD AND THE OTHER ALGORITHMS ON DTLZ1, DTLZ2, DTLZ3, AND DTLZ4

INSTANCES WITH DIFFERENT NUMBER OF OBJECTIVES. BEST PERFORMANCE IS HIGHLIGHTED IN BOLD FACE WITH GRAY BACKGROUND

(a) (b) (c) (d) (e)

Fig. 11. Parallel coordinates of nondominated fronts obtained by five algorithms on the 15-objective DTLZ3 instance. (a) MOEA/DD. (b) NSGA-III.
(c) MOEA/D. (d) GrEA. (e) HypE.

(a) (b) (c) (d) (e)

Fig. 12. Parallel coordinates of nondominated fronts obtained by five algorithms on the 15-objective DTLZ4 instance. (a) MOEA/DD. (b) NSGA-III.
(c) MOEA/D. (d) GrEA. (e) HypE.

convex and concave). From the empirical results shown in
Table VIII, it is clear that MOEA/DD is the best opti-
mizer, where it achieves the best HV values in all three-
to ten-objective test instances. MOEA/D performs slightly

worse than MOEA/DD, where the differences in their HV
values are not significant. In contrast, the performance of
GrEA and HypE are not very promising. It is worth not-
ing that HypE, whose performance is not satisfied in DTLZ
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TABLE VIII
BEST, MEDIAN, AND WORST HV VALUES OBTAINED BY MOEA/DD AND THE OTHER ALGORITHMS ON WFG1 TO WFG9 INSTANCES WITH

DIFFERENT NUMBER OF OBJECTIVES. BEST PERFORMANCE IS HIGHLIGHTED IN BOLD FACE WITH GRAY BACKGROUND

test suite, shows relatively competitive performance in WFG1
instances.

The EF of WFG2 is composed of several disconnected con-
vex segments and its variables are nonseparable. MOEA/DD
still obtains the best HV values in all three- to ten-objective
WFG2 instances. The performance of MOEA/D and GrEA are
similar in most cases, where the prior one only wins in the
five-objective case.

WFG3 is the connected version of WFG2, where its charac-
teristic is a linear and degenerate EF shape. The performance
of these four algorithms are similar in the three- and five-
objective cases. MOEA/DD shows the best HV values in
the three- and ten-objective cases, while GrEA wins in the
five- and eight-objective cases. When the number of objectives
becomes large (i.e., m = 8 and m = 10), the performance of
MOEA/D and HypE are much worse than that of MOEA/DD
and GrEA.

Although WFG4 to WFG9 share the same EF shape in the
objective space, which is a part of a hyper-ellipse with radii
ri = 2i, where i ∈ {1, . . . , m}, their characteristics in the deci-
sion space are different. Specifically, WFG4 is featured by
its multimodality with large “hill sizes.” This characteristic
can easily cause an algorithm to be trapped in local optima.
MOEA/DD shows the best performance in most cases, except

the five-objective WFG4 instances. In particular, its superi-
ority becomes more evident when the number of objectives
becomes large. Similar to the observations in WFG4 instances,
for WFG5, a deceptive problem, the performance of MOEA/D,
GrEA and HypE become much worse than MOEA/DD in
eight- and ten-objective cases. WFG6 is a nonseparable and
reduced problem. GrEA is the best optimizer this time, where
it is only outperformed by MOEA/DD in the three-objective
case. WFG7 is a separable and uni-modal problem, but with
parameter dependency. The performance of four algorithms are
not very significantly different in the three- and five-objective
cases. However, the superiorities of MOEA/DD and GrEA are
evident when the number of objectives becomes large. Both
WFG8 and WFG9 have nonseparable property, but the param-
eter dependency caused by WFG8 is much harder than that in
WFG9. MOEA/DD shows the best performance in WFG8,
while GrEA only outperforms it in the eight-objective WFG9
instance. Similar to the observations before, the performance
of MOEA/D and HypE are acceptable in three- and five-
objective cases, but decline a lot in the higher-dimensional
cases. From the empirical studies on WFG test suite, we
conclude that the promising results obtained by MOEA/DD
should be attributed to its advanced technique for balancing
convergence and diversity.
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Fig. 13. Plots of average percentage of usages for each case on DTLZ1 and DTLZ4 with five and ten objectives, respectively.

TABLE IX
DIFFERENT CASES IN UPDATE PROCEDURE

C. Investigations of Different Scenarios in Update Procedure

As discussed in Section III-D, the update procedure of
MOEA/DD is implemented in a hierarchical manner. It care-
fully considers all possible cases (Table IX presents a brief
description for each of them) that might happen when intro-
ducing an offspring solution into the population. In this
section, without loss of generality, we empirically investigate
the usages of different cases on four selected test instances
(DTLZ1 and DTLZ4 with five and ten objectives). The param-
eters are set the same as suggested in Section IV-D, and 20
independent runs have been conducted for each test instance.
The average percentage of usages for each case on each test
instance is plotted in Fig. 13, separately. From these empirical
results, we have the following three observations.

1) In all test instances, the average percentage of usages
of C1 is the largest among all seven cases, and it grows
even larger with the increase of number of objectives
(the average percentage of usages of C1 in ten-objective
instance is larger than that in five-objective instance).
This can be explained by the fact that almost all solu-
tions in the population become nondominated when the
number of objectives increases [13].

2) The second frequent case is C2, where the offspring
solution is discarded immediately. This implies that
the reproduction operators, i.e., SBX and polynomial
mutation, used in MOEA/DD have some difficulties
in reproducing competitive offspring solutions when
handling problems with a large number of objectives.

3) Both C3 and C5 have hardly been utilized during the
whole evolutionary process. C4, C6, and C7 have been
utilized in the early stage of evolution, and then their
percentages of usages drop down to zero later on.

Algorithm 6: Variant of Update Procedure
Input: parent population P, offspring solution xc

Output: parent population P
1 Find the subregion associated with xc according to (6);
2 P′ ← P

⋃{xc};
3 Update the nondomination level structure of P′ according

to the method suggested in [66];
4 if l = 1 then
5 x′ ←LOCATE_WORST(P′);
6 P← P′ \ {x′};
7 else
8 if |Fl| = 1 then
9 P← P′ \ {xl};

10 else
11 Identify the most crowded subregion �h

associated with those solutions in Fl;
12 Find the worst solution

x′ = argmaxx∈�h gpbi(x|wh, z∗);
13 P← P′ \ {x′};
14 end
15 end
16 Update the nondomination level structure of P according

to the method suggested in [66];
17 return P

D. Further Investigations of Update Procedure

As discussed in Section III-D, to preserve the population
diversity, we give the worst solution (denoted as x′) in the last
nondomination level a second chance for survival, in case it is
associated with an isolated subregion. In order to validate the
importance of this idea, we design a counter example, which
is in compliance with the principle of Pareto dominance to
eliminate x′ immediately, for comparison. The pseudo-code
of this update procedure variant is given in Algorithm 6.

We use Algorithm 6 to replace line 7 in Algorithm 1,
and denote the resulted algorithm as v-MOEA/DD. The per-
formance of v-MOEA/DD is compared with MOEA/DD on
DTLZ1 to DTLZ4 test instances with 3–15 objectives. The
parameters are set the same as Section IV-D, and 20 inde-
pendent runs have been conducted for each test instance.
From the empirical results shown in Table X, we observe that
the performance of MOEA/DD is better than v-MOEA/DD
in most cases. It is worth noting that this update proce-
dure variant also has a diversity preservation mechanism, i.e.,
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TABLE X
BEST, MEDIAN, AND WORST IGD VALUES OBTAINED BY MOEA/DD AND v-MOEA/DD ON DTLZ1, DTLZ2, DTLZ3, AND DTLZ4 INSTANCES

WITH DIFFERENT NUMBER OF OBJECTIVES. BEST PERFORMANCE IS HIGHLIGHTED IN BOLD FACE WITH GRAY BACKGROUND

Fig. 14. Median IGD values found by MOEA/DD with 50 different combinations of T and δ on DTLZ1 and DTLZ4 with five and ten objectives, respectively.

LOCATE_WORST(P′), which removes the worst solution in the
most crowded subregion. However, the original update pro-
cedure introduced in Algorithm 4 has a stronger intention
for diversity preservation, which even violates the princi-
ple of Pareto dominance. According to the investigations in
Section V-C, C3 to C7 have not been frequently utilized dur-
ing the evolutionary process, this explains the observation that
the better IGD values obtained by MOEA/DD are not very sig-
nificant. Nevertheless, the occasional utilizations of C3 and C7
do contribute a lot to rescue the population diversity, especially
for DTLZ4 instances with a biased density.

E. Parameter Sensitivity Studies

There are two major parameters in MOEA/DD: the neigh-
borhood size T and the probability δ of selecting mating par-
ents from neighboring subregions. To study how MOEA/DD is
sensitive to these two parameters, we have tried to cover a wide
range of values for each parameter. Five values are considered
for T: 5, 10, 20, 30, and 50; 11 values are considered for δ,
ranging from 0.0 to 1.0 with a step size 0.1. We have taken
DTLZ1 and DTLZ4 instances with five and ten objectives,
respectively, to compare the performance of all 55 different
parameter configurations. Twenty independent runs have been
conducted for each configuration on each test instance.

Fig. 14 shows the median IGD values obtained by these 55
different configurations on each selected test instance. From

these four plots, one can observe that different configurations
can lead to different performances on distinct test instances.
Specifically, the mating restriction suggested in Section III-C
is blocked when δ = 0.0, which means that all mating par-
ents are randomly chosen from the entire population. We find
that this configuration is not a good choice, especially for
DTLZ4 instance. This phenomenon is also reflected by the
unsatisfied results obtained when setting a large neighborhood
size T , say T = 50. Moreover, the parameter combina-
tion (T = 5, δ = 1.0) is always the worst in all selected
test instances. This is because too small T and too large δ

settings make the reproduction operation excessively exploit
local areas, thus it might lose some important information
about the population. In general, it is better to choose T
between 10 and 20, and δ between 0.6 and 0.9.

VI. HANDLING CONSTRAINTS

After demonstrating the superiority of MOEA/DD for
solving unconstrained (i.e., with box constraints alone)
many-objective optimization problems, this section extends
MOEA/DD (denoted as C-MOEA/DD) to solve constrained
many-objective optimization problems.

In case of the presence of infeasible solutions, to give
more emphasis on feasible solutions than the infeasible ones,
some modifications are suggested to the update and repro-
duction procedures of MOEA/DD, while the other parts keep
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Algorithm 7: Update Procedure With Constraint Handling
Input: parent population P, offspring solution xc

Output: parent population P
1 Find the subregion associated with xc according to (6);
2 P′ ← P

⋃{xc};
3 S← ∅; // infeasible solutions archive
4 foreach x ∈ P′ do
5 if CV(x) > 0 then
6 S← S

⋃{x};
7 end
8 end
9 if |S| = 0 then

10 UPDATE_POPULATION(P, xc);
11 else
12 Sort S in descending order according to CV;
13 flag← 0;
14 for i← 1 to |S| do
15 if S(i)’s subregion is not isolated then
16 flag← 1, x′ ← S(i);
17 break;
18 end
19 end
20 if flag = 0 then
21 x′ ← S(1);
22 end
23 P← P′ \ {x′};
24 end
25 return P

untouched. It is worth noting that these modifications do not
introduce any further parameters to MOEA/DD. Moreover, if
all population members are feasible or an unconstrained prob-
lem is supplied, the modified procedures reduce to their uncon-
strained versions. In the following paragraphs, we illustrate
these modifications one by one.

A. Modifications on the Update Procedure

As suggested in [71], the constraint violation value of
a solution x, denoted as CV(x), is calculated by the
following form:

CV(x) =
J∑

j=1

〈gj(x)〉 +
K∑

k=1

|hk(x)| (19)

where the bracket operator 〈α〉 returns the absolute value of
α if α < 0, and returns 0 otherwise. It is obvious that the
smaller is the CV(x), the better is the quality of x, and the
CV of a feasible solution is always 0.

The pseudo-code of this modified update procedure is given
in Algorithm 7. First and foremost, we identify the subregion
associated with xc and combine xc with the parent popu-
lation P to form a hybrid population P′ (lines 1 and 2 of
Algorithm 7). If every member in P′ is feasible, we use the
unconstrained update procedure, introduced in Section III-D,
to update P (line 10 of Algorithm 7). Otherwise, the feasible
solutions will survive to the next round without reservation,

Algorithm 8: Binary Tournament Selection Procedure

Input: candidate solutions x1 and x2

Output: mating parent p
1 if CV(x1) < CV(x2) then
2 p← x1;
3 else if CV(x1) > CV(x2) then
4 p← x2;
5 else
6 p← RANDOM_PICK(x1, x2);
7 end
8 return p

while the survival of infeasible ones depends on both CVs and
niching scenarios. As discussed in Section III-D, the solution,
associated with an isolated subregion, is important for popu-
lation diversity. And such solution will survive in the update
procedure without reservation, even if it is inferior in terms of
convergence (i.e., it belongs to the current worst nondomina-
tion level). Inheriting this idea, we give the infeasible solution,
associated with an isolated subregion, a second chance to sur-
vive. Specifically, we will at first identify the solution in P′
that has the largest CV. If this solution is not associated with
an isolated subregion, it will be treated as the current worst
solution (denoted as x′); otherwise, for the sake of population
diversity, it will be preserved for later consideration. Instead,
we will find the solution in P′ that has the second largest CV.
Depending on whether this solution is associated with an iso-
lated subregion or not, we decide whether it is treated as x′
or not, so on and so forth (lines 12–19 of Algorithm 7). It is
worth noting that if every infeasible solution in P′ is associ-
ated with an isolated subregion, the one with the largest CV
will be treated as x′ (lines 20–22 of Algorithm 7). At last, x′
is eliminated from P′ (line 23 of Algorithm 7).

B. Modifications on the Reproduction Procedure

In order to handle the third challenge posed in Section I, the
selection of mating parents is restricted to some neighboring
subregions as in Section III-C. However, due to the presence
of infeasible solutions, there is an additional requirement for
emphasizing a feasible solution over an infeasible solution and
small CV solution over a large CV solution.

For this purpose, we randomly select two solutions, denoted
as x1 and x2, from some specified neighboring subregions.
And the better one is chosen as the mating parent. In par-
ticular, since the CV of a feasible solution is always 0, we
just choose the one with a smaller CV. If both x1 and x2

have the same CV, we choose one at random. The pseudo-
code of this binary tournament selection procedure is given
in Algorithm 8. In order to select other mating parents, simi-
larly, another pair of solutions are randomly chosen from some
neighboring subregions and the above tournament selection is
applied to choose the better one as the second mating parent,
so on and so forth. Afterwards, variation operation is applied
on the selected mating parents to reproduce new offspring
solutions.
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Fig. 15. Illustration of Constraint Surfaces of C1-DTLZ1, C2-DTLZ2, C3-DTLZ1, and C3-DTLZ4 in 2-D Case.

C. Experimental Setup

This section presents the experimental design for the per-
formance investigations of C-MOEA/DD on many-objective
optimization problems with various constraints. At first, we
introduce the constrained test instances used in our empir-
ical studies. Then, we describe the performance metrics,
after which we briefly introduce the EMO algorithms used
for comparisons. Finally, we provide the general parameter
settings.

1) Constrained Test Instances: Four constrained test
instances suggested in [71] (C1-DTLZ1, C2-DTLZ2,
C3-DTLZ1, and C3-DTLZ4, where Ci, i ∈ {1, 2, 3}, indicates
the Type-i constraints) are chosen for our empirical studies.
For each test instance, the objective functions, the number
of objectives and decision variables are set the same as its
unconstrained version. In the following paragraph, we briefly
introduce the constraints incurred by each test instance.

1) C1-DTLZ1: This is a Type-1 constrained problem, where
the original EF is still optimal, but the feasible search
space is compressed to a small part that is close to the
EF. The constraint is formulated as

c(x) = 1− fm(x)

0.6
−

m−1∑

i=1

fi(x)

0.5
≥ 0. (20)

2) C2-DTLZ2: This is a Type-2 constrained problem, where
only the region that lies inside each of the m+ 1 hyper-
spheres of radius r is feasible. It is with the following
constraint:

c(x) = −min

⎧
⎨

⎩

m
min
i=1

⎡

⎣( fi(x)− 1)2 +
m∑

j=1,j�=i

f 2
j (x)− r2

⎤

⎦,

×
[

m∑

i=1

(
fi(x)− 1/

√
m
)2 − r2

]⎫
⎬

⎭
≥ 0

(21)

where r = 0.4, for m = 3 and 0.5, otherwise.
3) C3-DTLZ1 and C3-DTLZ4: They are two Type-3 con-

strained problems, which involve multiple constraints.
The EF of the original unconstrained problem is not
optimal any longer, rather portions of the added con-
straint surfaces constitute the EF. C3-DTLZ1 instance is

Fig. 16. Illustration of finding five targeted Pareto-optimal points on the EFs
of C3-DTLZ1 and C3-DTLZ4.

TABLE XI
NUMBER OF GENERATIONS FOR DIFFERENT TEST INSTANCES

modified from DTLZ1 by adding the following m linear
constraints:

ci(x) =
m∑

j=1,j�=i

fj(x)+ fi(x)

0.5
− 1 ≥ 0 (22)

where i ∈ {1, . . . , m}. Similarly, C3-DTLZ4 is modified
by adding the following m quadratic constraints:

ci(x) = f 2
i (x)

4
+

m∑

j=1,j�=i

f 2
j (x)− 1 ≥ 0 (23)

where i ∈ {1, . . . , m}.
Fig. 15 illustrates the constraint surfaces of C1-DTLZ1,

C2-DTLZ2, C3-DTLZ1, and C3-DTLZ4 in a 2-D case.
2) Performance Metric: We still choose IGD as the perfor-

mance metric to evaluate the quality of the obtained solution
set. However, due to the introduction of particular constraints,
the targeted Pareto-optimal points are different from the cor-
responding unconstrained version for C2-DTLZ2, C3-DTLZ1,
and C3-DTLZ4. Specifically, as for C2-DTLZ2, we at first
sample a set of Pareto-optimal points based on the method
introduced in Section IV-B for DTLZ2. Then, only those sat-
isfying the constraint introduced by (21) are kept to form P∗.
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Algorithm 9: Variant of Update Procedure With Constraint
Handling

Input: parent population P, offspring solution xc

Output: parent population P
1 Find the subregion associated with xc according to (6);
2 P′ ← P

⋃{xc};
3 S← ∅; // infeasible solutions archive
4 foreach x ∈ P′ do
5 if CV(x) > 0 then
6 S← S

⋃{x};
7 end
8 end
9 if |S| = 0 then

10 UPDATE_POPULATION(P, xc);
11 else
12 Sort S in descending order according to CV;
13 x′ ← S(1);
14 P← P′ \ {x′};
15 end
16 return P

As for C3-DTLZ1 and C3-DTLZ4, we use the similar rou-
tines described in Section IV-B to locate the intersecting points
of weight vectors and constraint surfaces. Specifically, for
C3-DTLZ1 or C3-DTLZ4, a solution x∗, whose objective vec-
tor lies on its corresponding constraint surface, should make
(22) or (23) equal to zero. Considering the jth constraint,
j ∈ {1, . . . , m}, for a weight vector w = (w1, . . . , wm)T ,
x∗ satisfies

fi(x∗)
wi
= tj (24)

where i ∈ {1, . . . , m} and tj > 0. Put (24) into (22), we have

tj = 1

2× wj +∑m
i=1,i�=j wi

. (25)

Similarly, put (24) into (23), we have

tj = 1
√∑m

i=1,i�=j w2
i + w2

j /4
. (26)

Finally, the targeted Pareto-optimal point of x∗ on the con-
straint surface, denoted as F(x∗) = (f1(x∗), . . . , fm(x∗))T , can
be calculated as

fi(x∗) = max
j∈{1,...,m}wi × tj (27)

where i ∈ {1, . . . , m}. Fig. 16 presents an intuitive illustration
of finding five targeted Pareto-optimal points on the EFs of
C3-DTLZ1 and C3-DTLZ4, respectively, in a 2-D space.

3) EMO Algorithms in Comparisons: We consider
the two constrained optimizers suggested in [71] for
comparisons.

1) C-NSGA-III: The differences between C-NSGA-III and
NSGA-III lie in two parts: one is the elitist selec-
tion operator, where a constraint-domination principle
is adopted; and the other is the mating selection, where

TABLE XII
BEST, MEDIAN, AND WORST IGD VALUES OBTAINED BY C-MOEA/DD,

C-NSGA-III, AND C-MOEA/D ON C1-DTLZ1, C2-DTLZ2,
C3-DTLZ1, AND C3-DTLZ4 INSTANCES WITH DIFFERENT

NUMBER OF OBJECTIVES. BEST PERFORMANCE IS

HIGHLIGHTED IN BOLD FACE WITH GRAY BACKGROUND

a binary tournament selection procedure is applied to
emphasize feasible solutions and infeasible solutions
with small CVs.
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TABLE XIII
BEST, MEDIAN, AND WORST IGD VALUES OBTAINED BY C-MOEA/DD AND vC-MOEA/DD ON C1-DTLZ1, C2-DTLZ2,

C3-DTLZ1, AND C3-DTLZ4 INSTANCES WITH DIFFERENT NUMBER OF OBJECTIVES. BEST PERFORMANCE IS

HIGHLIGHTED IN BOLD FACE WITH GRAY BACKGROUND

2) C-MOEA/D: This is an extension of the original
MOEA/D introduced in Section IV-C. In order to give
adequate emphasis for the feasible and small CV solu-
tions, a modification has been made in the update
procedure of MOEA/D.

4) General Parameter Settings: Almost all parameters are
set the same as Section IV-D, except the number of generations
which is listed in Table XI.

D. Performance Comparisons With C-NSGA-III and
C-MOEA/D

According to the description in Section VI-C1, Type-1 con-
strained problems introduce difficulties for approximating the
global EF. From the empirical results shown in Table XII,
it is obvious that C-MOEA/DD performs significantly bet-
ter than the other two algorithms in almost all C1-DTLZ1
instances, except the case with 15 objectives. The performance
of C-NSGA-III and C-MOEA/D is similar in all C1-DTLZ1
instances, but the former one achieves the best medium IGD
value for the 15-objective case.

By introducing infeasibility to several parts of the EF,
Type-2 constrained problems are designed to test an algo-
rithm’s ability for dealing with disconnected EFs. From
the IGD values shown in Table XII, we can see that the
performance of these three algorithms are similar in most
cases, except the 15-objective C2-DTLZ2 instance, where C-
MOEA/DD performs significantly worse than the other two
algorithms. Moreover, for all 3- to 15-objective C2-DTLZ2
instances, the worst IGD values obtained by C-MOEA/D are
much larger than the other algorithms. This indicates that C-
MOEA/D is not able to approximate the global EF in all 20
runs.

Rather than finding the original EF of the correspond-
ing unconstrained problem, the optimal front of Type-3
constrained problem is a composite of several constraint
surfaces. For C3-DTLZ1 problem, Table XII shows that
C-MOEA/DD outperforms C-NSGA-III and C-MOEA/D in
all 3- to 15-objective C3-DTLZ1 instances. The performance

of C-NSGA-III and C-MOEA/D is similar in most cases, while
the former one is slightly better when the number of objec-
tives increases. As for C3-DTLZ4, an additional difficulty is
introduced by its biased density of solutions. Similar to the
observations for unconstrained DTLZ4, C-MOEA/D suffers
from the loss of population diversity, and its obtained IGD val-
ues are the worst comparing to the other algorithms. However,
it is interesting to note that the best IGD values achieved by
C-MOEA/D for three- and five-objective C3-DTLZ4 instances
are better than those of C-NSGA-III.

E. Further Investigations of the Modified Update Procedure

As discussed in Section VI-A, to preserve the population
diversity, we use the similar idea for unconstrained problems
to give the worst solution (denoted as x′), which has the largest
CV, a second chance for survival. Similar to the investigations
conducted in Section V-D, we also design a counter example
to validate this idea. The pseudo-code of this update procedure
variant is given in Algorithm 9.

We use Algorithm 9 to replace the update procedure
used in C-MOEA/DD, and denote the resulted algorithm
as vC-MOEA/DD. The performance of vC-MOEA/DD is
compared with C-MOEA/DD on the benchmark problems
introduced in Section VI-C1. The parameters are set the same
as Section VI-C4, and 20 independent runs have been con-
ducted for each test instance. Empirical results are presented
in Table XIII, from which we find that the performance of
C-MOEA/DD is better than vC-MOEA/DD in most com-
parisons. This observation conforms to the conclusion in
Section V-D. It supports our basic idea for enhancing the
population diversity, regardless of violating the principles of
traditional Pareto dominance relation and constraint handling
to a certain extent.

VII. CONCLUSION

In this paper, we have suggested a unified paradigm, which
combines dominance- and decomposition-based approaches,
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for solving many-objective optimization problems. In
MOEA/DD, we use a set of weight vectors to specify several
subregions in the objective space. Furthermore, each weight
vector also defines a subproblem for fitness evaluation. The
parent population is updated in a steady-state scheme, where
only one offspring solution is considered each time. To
avoid unnecessary dominance comparisons, we employ the
method proposed in [66] to update the nondomination level
structure of the population after introducing an offspring
solution. Generally speaking, the worst solution, in term of
scalarization function value, belongs to the last nondomination
level will be removed from further consideration. However, to
further improve the population diversity, MOEA/DD allows
such kind of solution survive to the next round in case it is
associated with an isolated subregion. The performance of
MOEA/DD has been investigated on a set of unconstrained
benchmark problems with up to 15 objectives. The empirical
results demonstrate that the proposed MOEA/DD is able
to find a well-converged and well-distributed set of points
for all test instances. In addition to the unconstrained opti-
mization problems, we have further extended MOEA/DD
for handling problems with various constraints. Following
the idea for unconstrained cases, we give the worst solution,
with the largest CV, a second chance for survival in case it is
associated with an isolated subregion. Empirical results have
extensively demonstrated the superiority of C-MOEA/DD for
solving problems with different types of constraints and a
large number of objectives.

In the future, it is interesting to investigate the performance
of MOEA/DD for a wider range of problems, such as problems
with complicated PS shapes (see [40], [72], [73]), combinato-
rial optimization problems (see [18], [46], [74]), and problems
in real-world with a large number of objectives. Moreover,
instead of finding the entire PF, it is also interesting to use
our proposed MOEA/DD to find the subset of Pareto-optimal
solutions preferred by the decision maker. In addition, as dis-
cussed in [75], the performance of an EMO algorithm might
degenerate with the increase of number of decision variables.
Therefore, it is worthwhile to investigate the scalability of
MOEA/DD for large-scale problems.
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