周晓君

教授 博士生导师 硕士生导师

入职时间:2014-12-23

所在单位:自动化学院

学历:博士研究生毕业

办公地点:中南大学校本部民主楼316

性别:男

联系方式:+86-13787052648

学位:博士学位

在职信息:在职

毕业院校:澳大利亚联邦大学

学科:控制科学与工程

本站总访问量

当前位置:周晓君教授的个人主页   >>   智能优化状态转移算法

相关介绍

发布时间:2022-02-22

点击次数:

状态转移算法简介:

背景:

自上世纪70年代美国密歇根大学约翰·霍兰德教授最早提出的遗传算法以来,以遗传算法为代表的智能优化算法得到了长足的发展,涌现了诸如模拟退火、蚁群算法、粒子群优化等众多新型智能优化算法,正在成为智能科学、信息科学、人工智能中最为活跃的研究方向,并在诸多工程领域得到迅速推广和应用。目前大多数智能优化算法都是以行为主义模仿学习为主,通过模拟自然界鸟群、蜂群、鱼群等生物进化来求解复杂优化问题。然而,基于行为主义的智能优化算法主要是模仿,碰到什么就模仿学习什么,过于机械,带有很大的盲从性,没有深刻反映出最优化算法的本质、目的和要求。一方面,这种基于模仿表象学习的方法造成算法的可扩展性差,大多数智能优化算法在某些问题上低维时表现良好,维度变高时效果显著恶化;另一方面,它使得算法容易出现诸如停滞或早熟收敛等怪异现象,即算法可能停滞在任意随机点,而不是数学意义上的最优解。为了消除已有智能优化算法容易陷入停滞怪象、提高算法的可扩展性和拓宽智能优化算法的应用范围,周晓君博士于2012年原创性地提出了一种基于结构化学习的新型智能优化算法——状态转移算法。

原理:

状态转移算法是一种基于结构化学习的智能型随机性全局优化算法,它抓住最优化算法的本质、目的和要求,以全局性、最优性、快速性、收敛性、可控性五大核心结构要素为体系框架。它的基本思想是将最优化问题的一个解看成是一个状态,解的迭代更新过程看成是状态转移过程,利用现代控制理论中的离散时间状态空间表达式来作为产生候选解的统一框架,基于此框架来设计状态变换算子。与大多数基于种群的进化算法不同,标准的状态转移算法是一种基于个体的进化算法,它基于给定当前解,通过采样方式,多次独立运行某种状态变换算子产生候选解集,并与当前解进行比较,迭代更新当前解,直到满足某种终止条件。值得一提的是,状态转移算法中的每种状态变换算子都能够产生具有规则形状、可控大小的几何邻域,它设计了包括旋转变换、平移变换、伸缩变换、坐标轴搜索等不同的状态变换算子以满足全局搜索、局部搜索以及启发式搜索等功能需要,并且以交替轮换的方式适时地使用各种不同算子,使得状态转移算法能够在概率意义上很快找到全局最优解。

智能优化算法对比

通过常见的标准测试函数Rastrigin函数,下面展示了标准状态转移算法STA与其它智能优化算法,包括人工蜂群算法(ABC)、粒子群优化算法(CLPSO)、差分进化算法(SaDE)和遗传算法(RCGA)在该函数上寻优性能对比。可以看出,跟先进的遗传算法、粒子群优化算法、差分进化算法等智能优化算法相比,状态转移算法具有全局搜索能强、寻优速度快、扩展性好、可控性高等显著优点。

相关论文

发布时间:2022-02-22

[1] Zhou X, Yang C, Gui W. State transition algorithm[J]. Journal of Industrial & Management Optimization, 2012, 8(4): 1039-1056.
[2] 阳春华, 唐小林, 周晓君, 等. 一种求解旅行商问题的离散状态转移算法[J]. 控制理论与应用, 2013 (8): 1040-1046.
[3 Zhou X, Yang C, Gui W. Nonlinear system identification and control using state transition algorithm[J]. Applied Mathematics and Computation, 2014, 226: 169-179.
[4] Zhou X, Hanoun S, Gao D Y, et al. A multiobjective state transition algorithm for single machine scheduling[M]. Advances in Global Optimization. Springer, Cham, 2015: 79-88.
[5] Tang X, Yang C, Zhou X, et al. A discrete state transition algorithm for generalized traveling salesman problem[M]. Advances in Global Optimization. Springer, Cham, 2015: 137-145.
[6] Zhou X, Gao D Y, Yang C, et al. Discrete state transition algorithm for unconstrained integer optimization problems[J]. Neurocomputing, 2016, 173: 864-874.
[7] Zhou X, Gao D Y, Simpson A R. Optimal design of water distribution networks by a discrete state transition algorithm[J]. Engineering Optimization, 2016, 48(4): 603-628.
[8] Zhou X, Yang C, Gui W. A matlab toolbox for continuous state transition algorithm[C]. In the 35th Chinese Control Conference (CCC). IEEE, 2016: 9172-9177.
[9] Zhou X, Yang C, Gui W. A comparative study of STA on large scale global optimization[C]. In the 12th World Congress on Intelligent Control and Automation (WCICA). IEEE, 2016: 2115-2119.
[10] 董天雪, 阳春华, 周晓君, 等. 一种求解企业员工指派问题的离散状态转移算法[J]. 控制理论与应用, 2016, 33(10): 1378-1388.
[11] Han J, Yang C, Zhou X, et al. A new multi-threshold image segmentation approach using state transition algorithm[J]. Applied Mathematical Modelling, 2017, 44: 588-601.
[12] Han J, Yang C, Zhou X, et al. Dynamic multi-objective optimization arising in iron precipitation of zinc hydrometallurgy[J]. Hydrometallurgy, 2017, 173: 134-148.
[13] 张凤雪, 阳春华, 周晓君, 等. 基于控制周期计算的锌液净化除铜过程优化控制[J]. 控制理论与应用, 2017, 34(10): 1388-1395.
[14] Zhang F, Yang C, Zhou X, et al. Fractional-order PID controller tuning using continuous state transition algorithm[J]. Neural Computing and Applications, 2018, 29(10): 795-804.
[15] Zhou X, Shi P, Lim C C, et al. A dynamic state transition algorithm with application to sensor network localization[J]. Neurocomputing, 2018, 273: 237-250.
[16] Zhou X, Zhou J, Yang C, et al. Set-point tracking and multi-objective optimization-based PID control for the goethite process[J]. IEEE Access, 2018, 6: 36683-36698.
[17] Huang Z, Yang C, Zhou X, et al. A novel cognitively inspired state transition algorithm for solving the linear bi-level programming problem[J]. Cognitive Computation, 2018, 10(5): 816-826.
[18] Huang M, Zhou X. Feature selection in froth flotation for production condition recognition[J]. IFAC-PapersOnLine, 2018, 51(21): 123-128.
[19] Han J, Yang C, Zhou X, et al. A two-stage state transition algorithm for constrained engineering optimization problems[J]. International Journal of Control, Automation and Systems, 2018, 16(2): 522-534.
[21] Zhang F, Yang C, Zhou X, et al. Fractional order fuzzy PID optimal control in copper removal process of zinc hydrometallurgy[J]. Hydrometallurgy, 2018, 178: 60-76.
[22] Zhou X, Long J, Xu C, et al. An external archive-based constrained state transition algorithm for optimal power dispatch[J]. Complexity, 2019 (4727168), 1-11.
[23] Zhou X, Yang K, Xie Y, et al. A novel modularity-based discrete state transition algorithm for community detection in networks[J]. Neurocomputing, 2019, 334: 89-99.
[24] Zhang F, Yang C, Zhou X, et al. Optimal Setting and Control Strategy for Industrial Process Based on Discrete-Time Fractional-Order PI $^{\lambda} $ D $^{\mu} $[J]. IEEE Access, 2019, 7: 47747-47761.
[25] Huang M, Zhou X, Huang T, et al. Dynamic optimization based on state transition algorithm for copper removal process[J]. Neural Computing and Applications, 2019, 31(7): 2827-2839.
[26] Huang Z, Yang C, Zhou X, et al. A hybrid feature selection method based on binary state transition algorithm and ReliefF[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(5): 1888-1898.
[27] Zhou X, Yang C, Gui W. A statistical study on parameter selection of operators in continuous state transition algorithm[J]. IEEE Transactions on Cybernetics, 2019, 49(10): 3722-3730.
[28] 周晓君, 阳春华, 桂卫华. 状态转移算法原理与应用[J]. 自动化学报, 2020, 46(11): 2260-2274.
[29] Han J, Yang C, Lim C C, et al. Power scheduling optimization under single-valued neutrosophic uncertainty[J]. Neurocomputing, 2020, 382: 12-20.
[30] Huang Z, Yang C, Zhou X, et al. Energy consumption forecasting for the nonferrous metallurgy industry using hybrid support vector regression with an adaptive state transition algorithm[J]. Cognitive Computation, 2020, 12(2): 357-368.
[31] Zhou X, Zhang R, Wang X, et al. Kernel intuitionistic fuzzy c-means and state transition algorithm for clustering problem[J]. Soft Computing, 2020, 24(20): 15507-15518.
[32] Zhou X, Zhang R, Yang K, et al. Using hybrid normalization technique and state transition algorithm to VIKOR method for influence maximization problem[J]. Neurocomputing, 2020, 410: 41-50.
[33] Zhou X, Zhang R, Yang C. A hybrid feature selection method for production condition recognition in froth flotation with noisy labels[J]. Minerals Engineering, 2020, 153: 106201.
[34] Zhou X, Huang M, Huang T, et al. Dynamic optimization for copper removal process with continuous production constraints[J]. IEEE Transactions on Industrial Informatics, 2020, 16(12): 7255-7263.
[35] Dong Y, Zhang H, Wang C, et al. A novel hybrid model based on Bernstein polynomial with mixture of Gaussians for wind power forecasting[J]. Applied Energy, 2021, 286: 116545.
[36] Huang Z, Yang C, Chen X, et al. Functional deep echo state network improved by a bi-level optimization approach for multivariate time series classification[J]. Applied Soft Computing, 2021, 106: 107314.
[37] Wang Z, Zhou X, Tian J, et al. Hierarchical parameter optimization based support vector regression for power load forecasting[J]. Sustainable Cities and Society, 2021, 71: 102937.
[38] 周晓君, 柳英键, 徐冲冲, 等. 一种自适应拟牛顿-状态转移混合智能优化算法及应用[J]. 控制与决策, 2021, 36(10): 2451-2458.
[39] Zhou X, Wang X, Huang T, et al. Hybrid intelligence assisted sample average approximation method for chance constrained dynamic optimization[J]. IEEE Transactions on Industrial Informatics, 2020, 17(9): 6409-6418.
[40] Zhou X, Tian J, Long J, et al. A fast constrained state transition algorithm[J]. Neurocomputing, 2021, 455: 202-214.
[41] Dong Y, Zhang H, Wang C, et al. Wind power forecasting based on stacking ensemble model, decomposition and intelligent optimization algorithm[J]. Neurocomputing, 2021, 462: 169-184.
[42] Han J, Yang C, Lim C C, et al. Stackelberg–Nash Game Approach for Constrained Robust Optimization With Fuzzy Variables[J]. IEEE Transactions on Fuzzy Systems, 2021, 29(11): 3519-3531.
[43] Han J, Yang C, Lim C C, et al. Stackelberg game approach for robust optimization with fuzzy variables[J]. IEEE Transactions on Fuzzy Systems, 2022, 30 (1), 258 - 269.
[44] Zhou X, Gao Y, Yang S, et al. A multiobjective state transition algorithm based on modified decomposition method[J]. Applied Soft Computing, 2022: 108553.
[45] Zhou X, Tian J, Wang Z, et al. Nonlinear bilevel programming approach for decentralized supply chain using a hybrid state transition algorithm[J]. Knowledge-Based Systems, 2022: 108119.
[46] Li W, Han J, Li Y, et al. Optimal sensor placement method for wastewater treatment plants based on discrete multi-objective state transition algorithm[J]. Journal of Environmental Management, 2022, 307: 114491.

相关代码

发布时间:2022-02-22

MATLAB版相关代码下载

[1] 箱型约束状态转移算法

针对下列最优化问题

\[\begin{align} & \min \quad f(x) \\ & s.t.\quad \ \ {{l}_{b}}\le x\le {{u}_{b}} \\ \end{align}\]

基本连续状态转移算法 BSTA.rar

参数最优连续状态转移算法 POSTA.rar

带有局部增强的自适应状态转移算法 ASTA.rar

[2] 一般约束优化转移算法

针对下列最优化问题

\begin{aligned} & \min f(x) \\ & \text { s.t. } g(x)<=0 \\ & \qquad \mathrm{lb}<=x<=u b \end{aligned}

快速约束状态转移算法 FCSTA.zip

[3] 离散状态转移算法 Discrete_STA.rar

针对下列最优化问题

\[\begin{align} & \min \quad f(x) \\ & s.t.\quad \ \ x\in \{{{s}_{1}},{{s}_{2}},\cdots ,{{s}_{m}}\} \\ \end{align}\]

[4] 多目标状态转移算法

针对下列最优化问题

\begin{aligned} & \min \left[f_1(x), f_2(x), \ldots, f_m(x)\right] \\ & \text { s.t. } l b<=x<=u b \end{aligned}

基于Pareto的多目标状态转移算法 MOSTAP.zip

基于分解的多目标状态转移算法 MOSTAD.zip

[5] 求解旅行商问题的离散状态转移算法

带二次状态转移的离散状态转移算法 STA_TSP.zip

带二次状态转移的离散动态状态转移算法 DaSTA_TSP

Python版相关代码下载

[1] 箱型约束状态转移算法

针对下列最优化问题

\[\begin{align} & \min \quad f(x) \\ & s.t.\quad \ \ {{l}_{b}}\le x\le {{u}_{b}} \\ \end{align}\]

基本连续状态转移算法 STA_python.rar